Seriani Nicola, Pompe Wolfgang, Ciacchi Lucio Colombi
Institut für Werkstoffwissenschaft, Technische Universität Dresden, Hallwachsstrasse 3, 01069 Dresden, Germany.
J Phys Chem B. 2006 Aug 3;110(30):14860-9. doi: 10.1021/jp063281r.
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.
汽车催化剂中铂颗粒的催化氧化活性被认为源于在富氧反应条件下形成的高活性表面氧化物相的存在。在此,我们通过基于密度泛函理论的第一性原理原子热力学计算和分子动力学模拟,研究了氧化铂表面和薄膜的热力学稳定性及其对碳化合物氧化的反应活性。在Pt(111)表面,最稳定的表面氧化物相是一层薄薄的α-PtO₂,它似乎对甲烷解离或一氧化碳氧化均无反应活性。在单层氧覆盖度下,类PtO结构在Pt(100)表面最稳定,而在更高覆盖度下则有利于形成连贯且无应力的Pt₃O₄薄膜。发现在大气压力下,块状Pt₃O₄在900 K左右的区域内热力学稳定。计算得出的甲烷在Pt₃O₄(100)表面解离的净驱动力远大于在所有其他研究的金属和氧化物表面上的净驱动力。此外,该表面上CO分子吸附在氧原子上的焓垒低至0.34 eV,并且在分子动力学模拟中观察到CO₂的解吸没有任何明显的能垒。综合这些结果表明,Pt₃O₄相具有高催化氧化活性,这在基于铂的汽车催化剂和气体传感器的背景下可能具有相关性。