Eads Calley N, Wang Weijia, Küst Ulrike, Prumbs Julia, Temperton Robert H, Scardamaglia Mattia, Schnadt Joachim, Knudsen Jan, Shavorskiy Andrey
MAX IV Laboratory, Lund University, Lund, Sweden.
Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden.
Nat Commun. 2025 Jan 31;16(1):1216. doi: 10.1038/s41467-025-56576-5.
Catalytic studies traditionally rely on steady-state conditions resulting in time-averaged datasets that do not differentiate between active and spectator species. This limitation can cause misinterpretations of catalytic function, as the signal of short-lived intermediates responsible for producing desired reaction products is often masked by more intense spectator species. Time-resolved ambient pressure X-ray photoelectron spectroscopy (tr-APXPS) mitigates this issue by combining microsecond time resolution under reaction conditions. Using tr-APXPS, we investigate the oxidation of CO over Pt(111) by concurrently tracking reaction products, surface intermediates, and catalyst response. Our findings reveal that chemisorbed oxygen, rather than Pt surface oxide, is the main species reacting with CO to form CO, supporting a primary Langmuir-Hinshelwood mechanism. The results shed new light on a heavily-debated reaction in catalysis. Beyond using CO pulses to determine active species, we demonstrate how careful tuning of pulsing parameters can be used for dynamic catalyst operation to enhance CO formation.
传统上,催化研究依赖于稳态条件,从而得到时间平均数据集,该数据集无法区分活性物种和旁观物种。这一局限性可能导致对催化功能的误解,因为负责生成所需反应产物的短寿命中间体的信号通常会被更强的旁观物种所掩盖。时间分辨常压X射线光电子能谱(tr-APXPS)通过在反应条件下结合微秒级时间分辨率来缓解这一问题。利用tr-APXPS,我们通过同时跟踪反应产物、表面中间体和催化剂响应,研究了CO在Pt(111)上的氧化过程。我们的研究结果表明,化学吸附的氧而非Pt表面氧化物是与CO反应生成CO₂的主要物种,这支持了主要的朗缪尔-欣谢尔伍德机理。这些结果为催化领域中一个备受争议的反应提供了新的见解。除了使用CO脉冲来确定活性物种外,我们还展示了如何通过仔细调整脉冲参数来实现动态催化剂操作,以增强CO₂的生成。