Suppr超能文献

核糖体募集的抑制独立于真核起始因子2α磷酸化诱导应激颗粒形成。

Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

作者信息

Mazroui Rachid, Sukarieh Rami, Bordeleau Marie-Eve, Kaufman Randal J, Northcote Peter, Tanaka Junichi, Gallouzi Imed, Pelletier Jerry

机构信息

Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6.

出版信息

Mol Biol Cell. 2006 Oct;17(10):4212-9. doi: 10.1091/mbc.e06-04-0318. Epub 2006 Jul 26.

Abstract

Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

摘要

被称为应激颗粒(SGs)的细胞质聚集体是细胞应激的结果,包含停滞的翻译起始前复合物。这些病灶被认为在细胞应激反应期间作为mRNA储存或分类的场所。已表明SG形成需要诱导真核起始因子(eIF)2α磷酸化。在此,我们研究了其他起始因子在此过程中的潜在作用,并证明干扰eIF4A活性(翻译起始核糖体募集阶段所需的一种RNA解旋酶)会诱导SG形成,且该事件不依赖于eIF2α磷酸化。我们还表明,抑制eIF4A活性不会损害应激条件下eIF2α被磷酸化的能力。此外,我们观察到脊髓灰质炎病毒感染后帽依赖性翻译受到抑制时SG的组装。我们提出,SG形成可以通过靶向翻译起始的eIF2α磷酸化依赖性和非依赖性途径发生。

相似文献

2
Uncoupling stress granule assembly and translation initiation inhibition.
Mol Biol Cell. 2009 Jun;20(11):2673-83. doi: 10.1091/mbc.e08-10-1061. Epub 2009 Apr 15.
3
G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits.
J Cell Biol. 2016 Mar 28;212(7):845-60. doi: 10.1083/jcb.201508028.
6
Large G3BP-induced granules trigger eIF2α phosphorylation.
Mol Biol Cell. 2012 Sep;23(18):3499-510. doi: 10.1091/mbc.E12-05-0385. Epub 2012 Jul 25.
7
Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage.
J Virol. 2016 Jun 24;90(14):6489-6501. doi: 10.1128/JVI.00647-16. Print 2016 Jul 15.
8
Herpes simplex virus 2 infection impacts stress granule accumulation.
J Virol. 2012 Aug;86(15):8119-30. doi: 10.1128/JVI.00313-12. Epub 2012 May 23.

引用本文的文献

1
Translational reprogramming under heat stress: a plant's perspective.
R Soc Open Sci. 2025 Jul 16;12(7):250132. doi: 10.1098/rsos.250132. eCollection 2025 Jul.
2
Functional amyloid protein FXR1 is recruited into neuronal stress granules.
Prion. 2025 Dec;19(1):1-16. doi: 10.1080/19336896.2025.2505422. Epub 2025 May 24.
3
tRNA synthetase activity is required for stress granule and P-body assembly.
bioRxiv. 2025 Mar 13:2025.03.10.642431. doi: 10.1101/2025.03.10.642431.
4
Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders.
Cell Commun Signal. 2025 Feb 13;23(1):84. doi: 10.1186/s12964-025-02054-w.
5
Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis.
Int J Mol Sci. 2024 Oct 20;25(20):11284. doi: 10.3390/ijms252011284.
6
Stress granules in cancer: Adaptive dynamics and therapeutic implications.
iScience. 2024 Jun 22;27(8):110359. doi: 10.1016/j.isci.2024.110359. eCollection 2024 Aug 16.
8
Critical role of G3BP1 in bovine parainfluenza virus type 3 (BPIV3)-inhibition of stress granules formation and viral replication.
Front Immunol. 2024 Apr 16;15:1358036. doi: 10.3389/fimmu.2024.1358036. eCollection 2024.
10
A Balancing Act: The Viral-Host Battle over RNA Binding Proteins.
Viruses. 2024 Mar 20;16(3):474. doi: 10.3390/v16030474.

本文引用的文献

1
Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A.
Nat Chem Biol. 2006 Apr;2(4):213-20. doi: 10.1038/nchembio776. Epub 2006 Mar 12.
2
RNA granules.
J Cell Biol. 2006 Mar 13;172(6):803-8. doi: 10.1083/jcb.200512082. Epub 2006 Mar 6.
3
Inhibition of eukaryotic translation initiation by the marine natural product pateamine A.
Mol Cell. 2005 Dec 9;20(5):709-22. doi: 10.1016/j.molcel.2005.10.008.
4
Inhibition of translational initiation by Let-7 MicroRNA in human cells.
Science. 2005 Sep 2;309(5740):1573-6. doi: 10.1126/science.1115079. Epub 2005 Aug 4.
5
Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10460-5. doi: 10.1073/pnas.0504249102. Epub 2005 Jul 19.
6
Stress granules and processing bodies are dynamically linked sites of mRNP remodeling.
J Cell Biol. 2005 Jun 20;169(6):871-84. doi: 10.1083/jcb.200502088.
7
Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation.
Mol Biol Cell. 2005 Aug;16(8):3753-63. doi: 10.1091/mbc.e05-02-0124. Epub 2005 Jun 1.
9
A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay.
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4118-23. doi: 10.1073/pnas.0400933101. Epub 2004 Mar 15.
10
Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.
Science. 2003 May 2;300(5620):805-8. doi: 10.1126/science.1082320.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验