Laxminarayan Parameshvyas, Alvarez Sergio A, Ruiz Carolina, Moonis Majaz
iProspect.com, Watertown, MA 02472, USA.
IEEE Trans Inf Technol Biomed. 2006 Jul;10(3):440-50. doi: 10.1109/titb.2006.872065.
We introduce a specialized association rule mining technique that can extract patterns from complex sleep data comprising polysomnographic recordings, clinical summaries, and sleep questionnaire responses. The rules mined can describe associations among temporally annotated events and questionnaire or summary data; e.g., the likelihood that an occurrence of a rapid eye movement (REM) sleep stage during the second 100 sleep epochs of the night is associated with moderate caffeine intake. We use chi2 analysis to ensure statistical significance of the mined rules at the level P < 0.05. Our results, obtained by mining sleep-related data from 242 human subjects, reveal clinically interesting associations among the polysomnographic and summary variables. Our experience suggests that association mining may also be useful for selection of variables prior to using logistic regression.
我们介绍了一种专门的关联规则挖掘技术,该技术可以从包含多导睡眠图记录、临床总结和睡眠问卷回复的复杂睡眠数据中提取模式。挖掘出的规则可以描述时间注释事件与问卷或总结数据之间的关联;例如,在夜间睡眠的第二个100个睡眠时段出现快速眼动(REM)睡眠阶段与适度摄入咖啡因相关的可能性。我们使用卡方分析来确保挖掘出的规则在P < 0.05水平上具有统计学意义。我们通过挖掘242名人类受试者的睡眠相关数据获得的结果揭示了多导睡眠图和总结变量之间临床上有趣的关联。我们的经验表明,关联挖掘在使用逻辑回归之前选择变量时也可能有用。