Strigari Lidia, D'Andrea Marco, Maini Carlo Ludovico, Sciuto Rosa, Benassi Marcello
Laboratory of Medical Physics and Expert Systems, National Cancer Institute Regina Elena, Rome, Italy.
Med Phys. 2006 Jun;33(6):1857-66. doi: 10.1118/1.2198189.
The standard computational method developed for internal radiation dosimetry is the MIRD (medical internal radiation dose) formalism, based on the assumption that tumor control is given by uniform dose and activity distributions. In modern systemic radiotherapy, however, the need for full 3D dose calculations that take into account the heterogeneous distribution of activity in the patient is now understood. When information on nonuniform distribution of activity becomes available from functional imaging, a more patient specific 3D dosimetry can be performed. Application of radiobiological models can be useful to correlate the calculated heterogeneous dose distributions to the current knowledge on tumor control probability of a homogeneous dose distribution. Our contribution to this field is the introduction of a parameter, the F factor, already used by our group in studying external beam radiotherapy treatments. This parameter allows one to write a simplified expression for tumor control probability (TCP) based on the standard linear quadratic (LQ) model and Poisson statistics. The LQ model was extended to include different treatment regimes involving source decay, incorporating the repair "micro" of sublethal radiation damage, the relative biological effectiveness and the effective "waste" of dose delivered when repopulation occurs. The sensitivity of the F factor against radiobiological parameters (alpha, beta, micro) and the influence of the dose volume distribution was evaluated. Some test examples for 131I and 90Y labeled pharmaceuticals are described to further explain the properties of the F factor and its potential applications. To demonstrate dosimetric feasibility and advantages of the proposed F factor formalism in systemic radiotherapy, we have performed a retrospective planning study on selected patient case. F factor formalism helps to assess the total activity to be administered to the patient taking into account the heterogeneity in activity uptake and dose distribution, giving the same TCP of a homogeneous prescribed dose distribution. Animal studies and collection of standardized clinical data are needed to ascertain the effects of nonuniform dose distributions and to better assess the radiobiological input parameters of the model based on LQ model.
为体内放射剂量学开发的标准计算方法是MIRD(医学内部辐射剂量)形式体系,其基于肿瘤控制由均匀剂量和活度分布给出这一假设。然而,在现代全身放射治疗中,现在已经认识到需要进行全面的三维剂量计算,以考虑患者体内活度的非均匀分布。当从功能成像获得关于活度非均匀分布的信息时,就可以进行更具患者特异性的三维剂量测定。应用放射生物学模型有助于将计算出的非均匀剂量分布与关于均匀剂量分布的肿瘤控制概率的现有知识相关联。我们在该领域的贡献是引入了一个参数,即F因子,我们小组已经在研究外照射放射治疗时使用过该参数。该参数允许基于标准线性二次(LQ)模型和泊松统计为肿瘤控制概率(TCP)写出一个简化表达式。LQ模型得到扩展,以纳入涉及源衰变的不同治疗方案,包括亚致死性辐射损伤的修复“微观”情况、相对生物效应以及再增殖发生时所给予剂量的有效“浪费”。评估了F因子对放射生物学参数(α、β、微观)的敏感性以及剂量体积分布的影响。描述了一些针对131I和90Y标记药物的测试示例,以进一步解释F因子的特性及其潜在应用。为了证明所提出的F因子形式体系在全身放射治疗中的剂量测定可行性和优势,我们对选定的患者病例进行了回顾性计划研究。F因子形式体系有助于在考虑活度摄取和剂量分布的异质性的情况下评估要给予患者的总活度,给出与均匀规定剂量分布相同的TCP。需要进行动物研究并收集标准化临床数据,以确定非均匀剂量分布的影响,并更好地评估基于LQ模型的模型的放射生物学输入参数。