Song William, Battista Jerry, Van Dyk Jake
London Regional Cancer Program, London Health Sciences Centre and Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
Med Phys. 2004 Nov;31(11):3034-45. doi: 10.1118/1.1810235.
The convolution method can be used to model the effect of random geometric uncertainties into planned dose distributions used in radiation treatment planning. This is effectively done by linearly adding infinitesimally small doses, each with a particular geometric offset, over an assumed infinite number of fractions. However, this process inherently ignores the radiobiological dose-per-fraction effect since only the summed physical dose distribution is generated. The resultant potential error on predicted radiobiological outcome [quantified in this work with tumor control probability (TCP), equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and generalized equivalent uniform dose (gEUD)] has yet to be thoroughly quantified. In this work, the results of a Monte Carlo simulation of geometric displacements are compared to those of the convolution method for random geometric uncertainties of 0, 1, 2, 3, 4, and 5 mm (standard deviation). The alpha/betaCTV ratios of 0.8, 1.5, 3, 5, and 10 Gy are used to represent the range of radiation responses for different tumors, whereas a single alpha/betaOAR ratio of 3 Gy is used to represent all the organs at risk (OAR). The analysis is performed on a four-field prostate treatment plan of 18 MV x rays. The fraction numbers are varied from 1-50, with isoeffective adjustments of the corresponding dose-per-fractions to maintain a constant tumor control, using the linear-quadratic cell survival model. The average differences in TCP and EUD of the target, and in NTCP and gEUD of the OAR calculated from the convolution and Monte Carlo methods reduced asymptotically as the total fraction number increased, with the differences reaching negligible levels beyond the treatment fraction number of > or =20. The convolution method generally overestimates the radiobiological indices, as compared to the Monte Carlo method, for the target volume, and underestimates those for the OAR. These effects are interconnected and attributed to assuming an infinite number of fractions inherent in the implementation of the convolution technique, irrespective of the uniqueness of each treatment schedule. Based on the fraction numbers analyzed (1-50), and the range of fraction numbers normally used clinically (> or =20), the convolution method can be used safely to estimate the effects of random geometric uncertainties on prostate treatment radiobiological outcomes, for both the target and the OAR. Although the results of this study is likely to apply to other clinical sites and treatment techniques other than the four-field, further validation similar to those done in this study may be necessary prior to clinical implementation.
卷积方法可用于将随机几何不确定性的影响纳入放射治疗计划中使用的计划剂量分布模型。通过在假定的无限多个分次上线性叠加无限小的剂量(每个剂量具有特定的几何偏移),可以有效地实现这一点。然而,这个过程本质上忽略了每分次的放射生物学剂量效应,因为只生成了总的物理剂量分布。预测的放射生物学结果(在本研究中用肿瘤控制概率(TCP)、等效均匀剂量(EUD)、正常组织并发症概率(NTCP)和广义等效均匀剂量(gEUD)来量化)上的潜在误差尚未得到充分量化。在本研究中,将几何位移的蒙特卡罗模拟结果与卷积方法在标准偏差为0、1、2、3、4和5毫米的随机几何不确定性情况下的结果进行了比较。使用0.8、1.5、3、5和10戈瑞的α/βCTV比值来代表不同肿瘤的放射反应范围,而使用单一的3戈瑞的α/βOAR比值来代表所有危及器官(OAR)。分析是在一个18兆伏X射线的四野前列腺治疗计划上进行的。分次次数从1到50变化,使用线性二次细胞存活模型对相应的每分次剂量进行等效应调整以维持恒定的肿瘤控制。从卷积法和蒙特卡罗法计算得到的靶区TCP和EUD以及OAR的NTCP和gEUD的平均差异随着总分次次数的增加而渐近减小,当治疗分次次数大于或等于20时,差异达到可忽略不计的水平。与蒙特卡罗方法相比,卷积方法通常高估了靶区体积的放射生物学指标,而低估了OAR的放射生物学指标。这些效应相互关联,并且归因于卷积技术实施中假设存在无限多个分次,而与每个治疗方案的独特性无关。基于分析的分次次数(1 - 50)以及临床通常使用的分次次数范围(大于或等于20),卷积方法可以安全地用于估计随机几何不确定性对前列腺治疗放射生物学结果(包括靶区和OAR)的影响。尽管本研究结果可能适用于除四野外的其他临床部位和治疗技术,但在临床应用之前可能需要进行类似于本研究的进一步验证。