Smith P M, Amaral I, Doherty M, Price M J, Jones A M
Centre for Sport and Exercise Science, University of Greenwich, Chatham, Kent, UK.
Int J Sports Med. 2006 Aug;27(8):610-6. doi: 10.1055/s-2005-865857.
The principal aim of this study was to examine how different ramp rates influenced the attainment of peak physiological responses during incremental arm crank ergometry (ACE). Additionally, the study examined whether there was any evidence for the development of an "excess" VO (2) during ACE due to upward curvi-linearity in the VO (2)-work rate relationship, and whether this was influenced by the ramp rate. Sixteen physically active, though non-specifically trained, men (mean +/- S age 30 +/- 8 years; height 1.79 +/- 0.07 m; body mass 84.7 +/- 13.2 kg) volunteered to participate. Having completed a familiarisation test, all subjects returned to the laboratory to complete two ramp tests on an electrically-braked ergometer in a counter-balanced order. Both ramp tests started at 60 W with work rate subsequently incremented by either 6 or 12 W . min (-1). Pulmonary gas exchange was measured breath-by-breath throughout the tests. Subjects achieved a greater final work rate during the 12 W . min (-1) test compared to the 6 W . min (-1) test (168 +/- 28 vs. 149 +/- 26 W; p < 0.001). The VO (2peak) (3.06 +/- 0.65 vs. 2.96 +/- 0.48 L . min (-1); p = 0.27), HR (peak) (179 +/- 15 vs. 177 +/- 16 b . min (-1); p = 0.17) and V.E (peak) (112 +/- 22 vs. 105 +/- 16 L . min (-1); p = 0.09) were not different between the tests, but VCO (2peak) (3.54 +/- 0.64 vs. 3.27 +/- 0.46 L . min (-1); p = 0.01) RER (peak) (1.17 +/- 0.07 vs. 1.11 +/- 0.06; p < 0.001), and end-exercise blood (lactate) (11.9 +/- 2.1 vs. 10.8 +/- 2.6 mmol . L (-1); p = 0.005) were all higher in the 12 W . min (-1) test. An "excess" VO (2) was observed in 13 out of 16 tests at 12 W . min (-1) and in 15 out of 16 tests at 6 W . min (-1). Neither the magnitude of the "excess" VO (2) (0.42 +/- 0.41 vs. 0.37 +/- 0.18 L . min (-1); p = 0.66) nor the VO (2) at which the V.O (2)-work rate relationship departed from linearity (2.17 +/- 0.34 vs. 2.18 +/- 0.32 L . min (-1); p = 0.94) were significantly different between the two ramp tests. These data indicate that differences in ramp rate within the range of 6 - 12 W . min (-1) influence the peak values of work rate, VCO (2) and RER, but do not influence peak values of VO (2) or HR during ACE. The development of an "excess" VO (2) appears to be a common feature of ramp exercise in ACE, although the mechanistic basis for this effect is presently unclear.
本研究的主要目的是探讨不同的递增速率如何影响递增式手臂曲柄运动(ACE)过程中生理反应峰值的达到情况。此外,该研究还考察了在ACE过程中,由于VO₂-功率关系呈向上的曲线线性,是否有证据表明会出现“额外”的VO₂,以及这是否受递增速率的影响。16名身体活跃但未经过专门训练的男性(平均年龄±标准差为30±8岁;身高1.79±0.07米;体重84.7±13.2千克)自愿参与。在完成一次熟悉测试后,所有受试者返回实验室,以平衡的顺序在电动刹车测力计上完成两次递增测试。两次递增测试均从60瓦开始,随后功率以每分钟6瓦或12瓦的速率递增。在整个测试过程中逐 breath-by-breath 测量肺气体交换。与6瓦·分钟⁻¹的测试相比,受试者在12瓦·分钟⁻¹的测试中达到了更高的最终功率(168±28瓦对149±26瓦;p<0.001)。两次测试之间的VO₂峰值(3.06±0.65升·分钟⁻¹对2.96±0.48升·分钟⁻¹;p = 0.27)、心率峰值(179±15次·分钟⁻¹对177±16次·分钟⁻¹;p = 0.17)和每分通气量峰值(112±22升·分钟⁻¹对105±16升·分钟⁻¹;p = 0.09)没有差异,但二氧化碳排出量峰值(3.54±0.64升·分钟⁻¹对3.27±0.46升·分钟⁻¹;p = 0.01)、呼吸交换率峰值(1.17±0.07对1.11±0.06;p<0.001)以及运动结束时的血乳酸(11.9±2.1毫摩尔·升⁻¹对10.8±2.6毫摩尔·升⁻¹;p = 0.005)在12瓦·分钟⁻¹的测试中均更高。在12瓦·分钟⁻¹的测试中,16次测试中有13次观察到“额外”的VO₂,在6瓦·分钟⁻¹的测试中,16次测试中有15次观察到。两次递增测试之间,“额外”VO₂的幅度(0.42±0.41升·分钟⁻¹对0.37±0.18升·分钟⁻¹;p = 0.66)以及VO₂-功率关系偏离线性时的VO₂(2.17±0.34升·分钟⁻¹对2.18±0.32升·分钟⁻¹;p = 0.9)均无显著差异。这些数据表明,在6 - 12瓦·分钟⁻¹范围内的递增速率差异会影响功率、二氧化碳排出量和呼吸交换率的峰值,但在ACE过程中不会影响VO₂或心率的峰值。“额外”VO₂的出现似乎是ACE递增运动的一个常见特征,尽管目前尚不清楚这种效应的机制基础。