Namboodiri K K, Elston R C, Glueck C J, Fallat R, Buncher C R, Tsang R
Am J Hum Genet. 1975 Jul;27(4):454-71.
Univariate and bivariate analyses of cholesterol and triglycerides are performed after appropriate age adjustment on 247 individuals in 33 families where the probands have elevations of cholesterol, low density lipoprotein and triglycerides, and type IIb lipoprotein phenotype. Mixture of lognormal distributions are fitted by maximum likelihood to the data. Best fitting single and mixtures of lognormal distributions are compared with empirical cumulative plots, and the likelihood-ratio criterion is used to test for significance. A mixture of two lognormal distributions fits significantly better than one lognormal distribution for cholesterol but not for triglycerides. When a mixture of bivariate lognormals is fitted to the data, only one local maximum is found, suggesting action of a single genetic determinant in this sample. The best cutoff line is almost parallel to the triglyceride axis, indicating the relatively high involvement of cholesterol compared to triglycerides in separating the normal and abnormal groups. Using the best linear function, the difference in the two bivariate means is found to account for 61% of the total variation in log cholesterol and log triglycerides. To determine if the results are due to enrichment of the sample with familial hypercholesterolemia syndrome, seven families where the proband and/or any relative has tendon xanthomas are removed and the analyses repeated on the remaining 26 kindreds. The results of these analyses are virtually the same as those of the total sample. Also, a subsample of 21 families in which the proband and at least one additional kindred member are affected is analyzed in the same manner with similar results. For comparison, data from a study of families with combined hyperlipidemia [1] are analyzed in an analogous manner, bearing in mind that the populations sampled are probably different. Fitting a mixture of two bivariate distributions and finding the best cutoff to these data indicate that triglycerides are more involved in separating the two groups. Probably because of major differences in ascertainment, the distribution of lipid levels in oour patient group is practically indistinguishable from that of hypercholesterolemia, and the Seattle data [1] are more nearly similar to hypertriglyceridemia. It may be premature to consider familial combined hyperlipidemia as an entity distinct from both hypercholesterolemia and hypertriglyceridemia. We hope it will eventually be possible to analyze these data using a refined genetic model that includes both major gene and polygenic effects and to combine this form of analysis with quantitative tissue culture methods.
对33个家族中的247名个体进行了单变量和双变量胆固醇及甘油三酯分析,这些家族中的先证者存在胆固醇、低密度脂蛋白和甘油三酯升高以及IIb型脂蛋白表型。通过最大似然法将对数正态分布混合拟合到数据中。将最佳拟合的单对数正态分布和对数正态分布混合与经验累积图进行比较,并使用似然比标准进行显著性检验。对于胆固醇,两个对数正态分布的混合拟合明显优于一个对数正态分布,但对于甘油三酯则不然。当将双变量对数正态分布的混合拟合到数据中时,只发现了一个局部最大值,表明该样本中存在单一遗传决定因素的作用。最佳截止线几乎与甘油三酯轴平行,表明与甘油三酯相比,胆固醇在区分正常组和异常组中所起的作用相对更大。使用最佳线性函数,发现两个双变量均值的差异占对数胆固醇和对数甘油三酯总变异的61%。为了确定结果是否归因于家族性高胆固醇血症综合征在样本中的富集,去除了先证者和/或任何亲属有肌腱黄色瘤的7个家族,并对其余26个家族重复进行分析。这些分析的结果与总样本的结果几乎相同。此外,对21个家族的子样本进行了同样的分析,这些家族中的先证者和至少一名其他家族成员受到影响,结果相似。为了进行比较,以类似的方式分析了来自一项混合性高脂血症家族研究的数据[1],同时要记住所抽样的人群可能不同。对这些数据拟合两个双变量分布的混合并找到最佳截止值表明,甘油三酯在区分两组中所起的作用更大。可能由于确定方法的重大差异,我们患者组的血脂水平分布与高胆固醇血症的分布几乎无法区分,而西雅图的数据[1]与高甘油三酯血症更为相似。将家族性混合性高脂血症视为一种与高胆固醇血症和高甘油三酯血症都不同的实体可能还为时过早。我们希望最终能够使用一种精细的遗传模型来分析这些数据,该模型包括主要基因和多基因效应,并将这种分析形式与定量组织培养方法相结合。