Suppr超能文献

从自然图像中估计非线性感受野。

Estimating nonlinear receptive fields from natural images.

作者信息

Rapela Joaquín, Mendel Jerry M, Grzywacz Norberto M

机构信息

Department of Electrical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-90025, USA.

出版信息

J Vis. 2006 May 16;6(4):441-74. doi: 10.1167/6.4.11.

Abstract

The response of visual cells is a nonlinear function of their stimuli. In addition, an increasing amount of evidence shows that visual cells are optimized to process natural images. Hence, finding good nonlinear models to characterize visual cells using natural stimuli is important. The Volterra model is an appealing nonlinear model for visual cells. However, their large number of parameters and the limited size of physiological recordings have hindered its application. Recently, a substantiated hypothesis stating that the responses of each visual cell could depend on an especially low-dimensional subspace of the image space has been proposed. We use this low-dimensional subspace in the Volterra relevant-space technique to allow the estimation of high-order Volterra models. Most laboratories characterize the response of visual cells as a nonlinear function on the low-dimensional subspace. They estimate this nonlinear function using histograms and by fitting parametric functions to them. Here, we compare the Volterra model with these histogram-based techniques. We use simulated data from cortical simple cells as well as simulated and physiological data from cortical complex cells. Volterra models yield equal or superior predictive power in all conditions studied. Several methods have been proposed to estimate the low-dimensional subspace. In this article, we test projection pursuit regression (PPR), a nonlinear regression algorithm. We compare PPR with two popular models used in vision: spike-triggered average (STA) and spike-triggered covariance (STC). We observe that PPR has advantages over these alternative algorithms. Hence, we conclude that PPR is a viable algorithm to recover the relevant subspace from natural images and that the Volterra model, estimated through the Volterra relevant-space technique, is a compelling alternative to histogram-based techniques.

摘要

视觉细胞的反应是其刺激的非线性函数。此外,越来越多的证据表明,视觉细胞经过优化以处理自然图像。因此,找到使用自然刺激来表征视觉细胞的良好非线性模型很重要。沃尔泰拉模型是一种适用于视觉细胞的有吸引力的非线性模型。然而,其大量的参数以及生理记录的有限规模阻碍了它的应用。最近,有人提出了一个有充分依据的假设,即每个视觉细胞的反应可能取决于图像空间中一个特别低维的子空间。我们在沃尔泰拉相关空间技术中使用这个低维子空间来估计高阶沃尔泰拉模型。大多数实验室将视觉细胞的反应表征为低维子空间上的非线性函数。他们使用直方图并通过将参数函数拟合到直方图来估计这个非线性函数。在这里,我们将沃尔泰拉模型与这些基于直方图的技术进行比较。我们使用来自皮层简单细胞的模拟数据以及来自皮层复杂细胞的模拟和生理数据。在所有研究的条件下,沃尔泰拉模型都具有同等或更高的预测能力。已经提出了几种方法来估计低维子空间。在本文中,我们测试投影追踪回归(PPR),一种非线性回归算法。我们将PPR与视觉中使用的两种流行模型进行比较:脉冲触发平均(STA)和脉冲触发协方差(STC)。我们观察到PPR比这些替代算法具有优势。因此,我们得出结论,PPR是从自然图像中恢复相关子空间的一种可行算法,并且通过沃尔泰拉相关空间技术估计的沃尔泰拉模型是基于直方图技术的一个有吸引力的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验