Suppr超能文献

复杂细胞池化与自然图像统计

Complex cell pooling and the statistics of natural images.

作者信息

Hyvärinen Aapo, Köster Urs

机构信息

Basic Research Unit, Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, Finland.

出版信息

Network. 2007 Jun;18(2):81-100. doi: 10.1080/09548980701418942.

Abstract

In previous work, we presented a statistical model of natural images that produced outputs similar to receptive fields of complex cells in primary visual cortex. However, a weakness of that model was that the structure of the pooling was assumed a priori and not learned from the statistical properties of natural images. Here, we present an extended model in which the pooling nonlinearity and the size of the subspaces are optimized rather than fixed, so we make much fewer assumptions about the pooling. Results on natural images indicate that the best probabilistic representation is formed when the size of the subspaces is relatively large, and that the likelihood is considerably higher than for a simple linear model with no pooling. Further, we show that the optimal nonlinearity for the pooling is squaring. We also highlight the importance of contrast gain control for the performance of the model. Our model is novel in that it is the first to analyze optimal subspace size and how this size is influenced by contrast normalization.

摘要

在之前的工作中,我们提出了一种自然图像的统计模型,该模型产生的输出类似于初级视觉皮层中复杂细胞的感受野。然而,该模型的一个弱点是池化结构是先验假设的,而不是从自然图像的统计特性中学习得到的。在此,我们提出一种扩展模型,其中池化非线性和子空间大小是经过优化而非固定的,因此我们对池化所做的假设要少得多。自然图像的结果表明,当子空间大小相对较大时会形成最佳概率表示,并且其似然性比没有池化的简单线性模型要高得多。此外,我们表明池化的最优非线性是平方。我们还强调了对比度增益控制对模型性能的重要性。我们的模型具有创新性,因为它是首个分析最优子空间大小以及该大小如何受对比度归一化影响的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验