Suppr超能文献

色谱中线性溶剂化能关系的化学诠释与实践

The chemical interpretation and practice of linear solvation energy relationships in chromatography.

作者信息

Vitha Mark, Carr Peter W

机构信息

Drake University, Department of Chemistry, 2507 University Avenue, Des Moines, IA 50311, USA.

出版信息

J Chromatogr A. 2006 Sep 8;1126(1-2):143-94. doi: 10.1016/j.chroma.2006.06.074. Epub 2006 Aug 4.

Abstract

This review focuses on the use of linear solvation energy relationships (LSERs) to understand the types and relative strength of the chemical interactions that control retention and selectivity in the various modes of chromatography ranging from gas chromatography to reversed phase and micellar electrokinetic capillary chromatography. The most recent, widely accepted symbolic representation of the LSER model, as proposed by Abraham, is given by the equation: SP=c + eE + sS + aA + bB + vV, in which, SP can be any free energy related property. In chromatography, SP is most often taken as logk' where k' is the retention factor. The letters E, S, A, B, and V denote solute dependent input parameters that come from scales related to a solute's polarizability, dipolarity (with some contribution from polarizability), hydrogen bond donating ability, hydrogen bond accepting ability, and molecular size, respectively. The e-, s-, a-, b-, and v-coefficients and the constant, c, are determined via multiparameter linear least squares regression analysis of a data set comprised of solutes with known E, S, A, B, and V values and which span a reasonably wide range in interaction abilities. Thus, LSERs are designed to probe the type and relative importance of the interactions that govern solute retention. In this review, we include a synopsis of the various solvent and solute scales in common use in chromatography. More importantly, we emphasize the development and physico-chemical basis of - and thus meaning of - the solute parameters. After establishing the meaning of the parameters, we discuss their use in LSERs as applied to understanding the intermolecular interactions governing various gas-liquid and liquid-liquid phase equilibria. The gas-liquid partition process is modeled as the sum of an endoergic cavity formation/solvent reorganization process and exoergic solute-solvent attractive forces, whereas the partitioning of a solute between two solvents is thermodynamically equivalent to the difference in two gas/liquid solution processes. We end with a set of recommendations and advisories for conducting LSER studies, stressing the proper chemical and statistical application of the methodology. We intend that these recommendations serve as a guide for future studies involving the execution, statistical evaluation, and chemical interpretation of LSERs.

摘要

本综述聚焦于利用线性溶剂化能关系(LSERs)来理解各种色谱模式(从气相色谱到反相色谱以及胶束电动毛细管色谱)中控制保留和选择性的化学相互作用的类型及相对强度。亚伯拉罕提出的LSER模型的最新且被广泛接受的符号表示由以下方程给出:SP = c + eE + sS + aA + bB + vV,其中,SP可以是任何与自由能相关的性质。在色谱中,SP最常被取为logk',其中k'是保留因子。字母E、S、A、B和V分别表示依赖于溶质的输入参数,它们来自与溶质的极化率、偶极矩(有极化率的一定贡献)、氢键供体能力、氢键受体能力以及分子大小相关的标度。e -、s -、a -、b -和v -系数以及常数c通过对由具有已知E、S、A、B和V值且相互作用能力范围相当广泛的溶质组成的数据集进行多参数线性最小二乘回归分析来确定。因此,LSERs旨在探究控制溶质保留的相互作用的类型和相对重要性。在本综述中,我们包含了色谱中常用的各种溶剂和溶质标度的概要。更重要的是,我们强调溶质参数的发展、物理化学基础以及其含义。在确定参数的含义之后,我们讨论它们在LSERs中的应用,以用于理解控制各种气 - 液和液 - 液相平衡的分子间相互作用。气 - 液分配过程被建模为一个吸热的空穴形成/溶剂重组过程和放热的溶质 - 溶剂吸引力的总和,而溶质在两种溶剂之间的分配在热力学上等同于两个气/液溶解过程的差值。我们最后给出了一组进行LSER研究的建议和注意事项,强调该方法在化学和统计方面的正确应用。我们希望这些建议能为未来涉及LSERs的实施、统计评估和化学解释的研究提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验