Liu Guangming, Ding Wei, Neiman Jill, Mulder Kathleen M
Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
J Biol Chem. 2006 Oct 6;281(40):29479-90. doi: 10.1074/jbc.M600579200. Epub 2006 Aug 4.
Because increased transforming growth factor-beta (TGFbeta) production by tumor cells contributes to cancer progression through paracrine mechanisms, identification of critical points that can be targeted to block TGFbeta production is important. Previous studies have identified the precise signaling components and promoter elements required for TGFbeta induction of TGFbeta1 expression in epithelial cells (Yue, J., and Mulder, K. M. (2000) J. Biol. Chem. 275, 30765-30773). To determine how regulation of TGFbeta3 expression differs from that of TGFbeta1, we identified the precise signaling pathways and transcription factor-binding sites that are required for TGFbeta3 gene expression. By using mutational analysis in electrophoresis mobility shift assays (EMSAs), we demonstrated that the c-AMP-responsive element (CRE) site in the TGFbeta3 promoter was required for TGFbeta-inducible TGFbeta3 expression. Electrophoresis mobility supershift assays indicated that CRE-binding protein 1 (CREB1) and Smad3 were the major components present in this TGFbeta-inducible complex. Furthermore, by using chromatin immunoprecipitation assays, we demonstrated that CREB-1, ATF-2, and c-Jun bound constitutively at the TGFbeta3 promoter (-100 to +1), whereas Smad3 bound at this site only after TGFbeta stimulation. In addition, inhibition of JNK and p38 suppressed TGFbeta induction of TGFbeta3 transactivation, whereas inhibition of ERK and protein kinase A had no effect. Small interfering RNA-CREB1 and small interfering RNA-Smad3 significantly inhibited TGFbeta stimulation of TGFbeta3 promoter reporter activity and TGFbeta3 production. Our results indicate that TGFbeta activation of the TGFbeta3 promoter CRE site, which leads to TGFbeta3 production, is required for TGFbetaRII, JNK, p38, and Smad3 but was independent of protein kinase A, ERK, and Smad4.
由于肿瘤细胞中转化生长因子-β(TGFβ)产量的增加通过旁分泌机制促进癌症进展,因此确定可靶向阻断TGFβ产生的关键点很重要。先前的研究已经确定了上皮细胞中TGFβ诱导TGFβ1表达所需的精确信号成分和启动子元件(Yue, J., and Mulder, K. M. (2000) J. Biol. Chem. 275, 30765 - 30773)。为了确定TGFβ3表达的调控与TGFβ1的调控有何不同,我们确定了TGFβ3基因表达所需的精确信号通路和转录因子结合位点。通过在电泳迁移率变动分析(EMSA)中使用突变分析,我们证明TGFβ3启动子中的c-AMP反应元件(CRE)位点是TGFβ诱导的TGFβ3表达所必需的。电泳迁移率超迁移分析表明,CRE结合蛋白1(CREB1)和Smad3是该TGFβ诱导复合物中的主要成分。此外,通过使用染色质免疫沉淀分析,我们证明CREB-1、ATF-2和c-Jun在TGFβ3启动子(-100至+1)处组成性结合,而Smad3仅在TGFβ刺激后才在该位点结合。此外,JNK和p38的抑制抑制了TGFβ对TGFβ3反式激活的诱导,而ERK和蛋白激酶A的抑制则没有作用。小干扰RNA-CREB1和小干扰RNA-Smad3显著抑制了TGFβ对TGFβ3启动子报告基因活性和TGFβ3产生的刺激。我们的结果表明,TGFβ3启动子CRE位点的TGFβ激活导致TGFβ3产生,这是TGFβRII、JNK、p38和Smad3所必需的,但与蛋白激酶A、ERK和Smad4无关。