Suppr超能文献

肌球蛋白工作冲程的应变依赖性动力学,以及如何通过光镊实验对其进行探究。

Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical-trap experiments.

作者信息

Smith David, Sleep John

机构信息

Department of Physiology, Monash University, Clayton, Victoria, Australia.

出版信息

Biophys J. 2006 Nov 1;91(9):3359-69. doi: 10.1529/biophysj.106.082289. Epub 2006 Aug 4.

Abstract

The strain-dependent kinetics of the myosin working stroke under load is derived from a flat-energy-landscape model for its untethered lever-arm, and compared with other scenarios in the literature. The "flat landscape" scenario is compatible with muscle-fiber experiments, but is more critically relevant to single-myosin experiments with an optically trapped actin filament. In such experiments, the strain dependence of stroke kinetics may be explored by comparing event-averaged and time-averaged displacements of the filament. With a specific kinetic model of the cross-bridge cycle, we have previously shown that the event-averaged displacement underestimates the working stroke. Here we predict that the two kinds of averaging give diverging estimates of the working stroke as the resolving time of the event detector is decreased to 1 ms or less, the discrepancy being critically dependent on the strain dependence of the stroke rate. Such analysis of trap displacement data offers the possibility of testing the strain-dependent stroke rate predicted by the flat-landscape model.

摘要

负载下肌球蛋白工作冲程的应变依赖性动力学是从其无束缚杠杆臂的平能量景观模型推导出来的,并与文献中的其他情况进行了比较。“平景观”情况与肌纤维实验兼容,但对于用光学捕获的肌动蛋白丝进行的单肌球蛋白实验更为关键。在这类实验中,冲程动力学的应变依赖性可以通过比较丝的事件平均位移和时间平均位移来探索。利用先前建立的横桥循环的特定动力学模型,我们已经表明事件平均位移低估了工作冲程。在这里,我们预测,随着事件探测器的分辨时间降低到1毫秒或更短,这两种平均方法对工作冲程的估计会出现分歧,这种差异严重依赖于冲程速率的应变依赖性。对捕获位移数据的这种分析提供了检验平景观模型预测的应变依赖性冲程速率的可能性。

相似文献

1
Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical-trap experiments.
Biophys J. 2006 Nov 1;91(9):3359-69. doi: 10.1529/biophysj.106.082289. Epub 2006 Aug 4.
3
Instabilities in the transient response of muscle.
Biophys J. 2003 Aug;85(2):818-27. doi: 10.1016/S0006-3495(03)74522-6.
4
The sliding filament model: 1972-2004.
J Gen Physiol. 2004 Jun;123(6):643-56. doi: 10.1085/jgp.200409089.
5
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.
6
Towards a unified theory of muscle contraction. I: foundations.
Ann Biomed Eng. 2008 Oct;36(10):1624-40. doi: 10.1007/s10439-008-9536-6. Epub 2008 Jul 19.
7
Computer system modelling muscle work.
Technol Health Care. 1998 Sep;6(2-3):139-49.
9
Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
Biophys J. 2006 Nov 15;91(10):3653-63. doi: 10.1529/biophysj.106.092510. Epub 2006 Aug 25.
10
Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1278-82. doi: 10.1073/pnas.0506272103. Epub 2006 Jan 20.

引用本文的文献

1
On the Control of Directionality of Myosin.
J Am Chem Soc. 2024 Oct 5. doi: 10.1021/jacs.4c09528.
2
The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles.
Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C103-C110. doi: 10.1152/ajpcell.00339.2019. Epub 2019 Oct 16.
3
Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.
J Muscle Res Cell Motil. 2017 Aug;38(3-4):275-289. doi: 10.1007/s10974-017-9482-8. Epub 2017 Sep 16.
4
Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.
PLoS Comput Biol. 2016 Sep 14;12(9):e1005083. doi: 10.1371/journal.pcbi.1005083. eCollection 2016 Sep.
5
Adaptive control of cardiac contraction to changes in loading: from theory of sarcomere dynamics to whole-heart function.
Pflugers Arch. 2011 Jul;462(1):49-60. doi: 10.1007/s00424-011-0966-x. Epub 2011 May 3.
6
Muscle contraction: A mechanical perspective.
Eur Phys J E Soft Matter. 2010 Aug;32(4):411-8. doi: 10.1140/epje/i2010-10641-0. Epub 2010 Sep 7.

本文引用的文献

1
Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiments and crystal structures.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1278-82. doi: 10.1073/pnas.0506272103. Epub 2006 Jan 20.
2
Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin.
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):87-92. doi: 10.1073/pnas.0506830102. Epub 2005 Dec 21.
3
Structural mechanism of the recovery stroke in the myosin molecular motor.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6873-8. doi: 10.1073/pnas.0408784102. Epub 2005 Apr 29.
5
The working stroke upon myosin-nucleotide complexes binding to actin.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6434-9. doi: 10.1073/pnas.1231998100. Epub 2003 May 15.
6
Temperature dependence of the force-generating process in single fibres from frog skeletal muscle.
J Physiol. 2003 May 15;549(Pt 1):93-106. doi: 10.1113/jphysiol.2002.038703. Epub 2003 Mar 28.
7
Mutation of the myosin converter domain alters cross-bridge elasticity.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3557-62. doi: 10.1073/pnas.062415899.
9
Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules.
Nat Cell Biol. 2001 Apr;3(4):425-8. doi: 10.1038/35070116.
10
Three conformational states of scallop myosin S1.
Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238-43. doi: 10.1073/pnas.200376897.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验