Suppr超能文献

类别内特征相关性与贝叶斯调整策略。

Within-category feature correlations and Bayesian adjustment strategies.

作者信息

Crawford L Elizabeth, Huttenlocher Janellen, Hedges Larry V

机构信息

Department of Psychology, University of Richmond, Richmond, VA 23173, USA.

出版信息

Psychon Bull Rev. 2006 Apr;13(2):245-50. doi: 10.3758/bf03193838.

Abstract

To the extent that categories inform judgments about items, the accuracy with which categories capture the statistical structure of experience should affect judgment accuracy. The authors argue that representations of feature correlations can serve as Bayesian priors, increasing the accuracy of stimulus estimates by decreasing variability. Participants viewed a series of objects that varied on two dimensions that were either uncorrelated or correlated. They estimated each item by manipulating a response object to make it match the presented stimulus. Subsequent classification and feature-inference tasks indicated that the correlation was detected. The pattern of variability in recollections of stimuli suggested that the feature correlation informed estimates as predicted by a Bayesian model of category effects on memory.

摘要

就类别影响对项目的判断而言,类别捕捉经验统计结构的准确性应会影响判断的准确性。作者认为,特征相关性的表征可以作为贝叶斯先验,通过降低变异性来提高刺激估计的准确性。参与者观看了一系列在两个维度上变化的物体,这两个维度要么不相关,要么相关。他们通过操纵一个反应物体使其与呈现的刺激相匹配来估计每个项目。随后的分类和特征推理任务表明相关性被检测到了。对刺激回忆的变异性模式表明,特征相关性如类别对记忆影响的贝叶斯模型所预测的那样影响估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验