Suppr超能文献

白血病中的染色质结构元件与染色体易位

Chromatin structural elements and chromosomal translocations in leukemia.

作者信息

Zhang Yanming, Rowley Janet D

机构信息

Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, USA.

出版信息

DNA Repair (Amst). 2006 Sep 8;5(9-10):1282-97. doi: 10.1016/j.dnarep.2006.05.020. Epub 2006 Aug 7.

Abstract

Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.

摘要

复发性染色体异常与白血病、淋巴瘤和肉瘤的某些亚型密切相关。最近,人们已经认识到它们可能参与了癌症,如前列腺癌。它们是决定疾病预后的最重要因素之一,在许多情况下,识别这些染色体异常对于选择合适的治疗方案至关重要。染色体易位在原发性和治疗相关的急性髓系白血病(AML)及骨髓增生异常综合征(MDS)中都经常被观察到。导致白血病和其他癌症中此类染色体易位的机制在很大程度上尚不清楚。白血病中所有常见染色体易位的基因组断点,包括t(4;11)、t(9;11)、t(8;21)、inv(16)、t(15;17)、t(12;21)、t(1;19)和t(9;22),都已被克隆。基因组断点倾向于聚集在相关基因的某些内含子区域,包括MLL、AF4、AF9、AML1、ETO、CBFB、MYHI1、PML、RARA、TEL、E2A、PBX1、BCR和ABL。然而,MLL的基因组断点在原发性和成年患者中倾向于聚集在8.3kb断点簇区域(BCR)的5'部分,而在婴儿白血病患者和t-AML患者中则聚集在3'部分;AML1和ETO基因的断点在原发性和t-AML患者中都出现在相同的聚集区域。这些差异可能反映了易位形成机制的差异。特定的染色质结构元件,如体内拓扑异构酶II(topo II)切割位点、DNase I超敏位点和支架附着区域(SARs),已在相关基因的断点区域进行了定位。强体内topo II切割位点和DNase I超敏位点通常彼此共定位,并且在大多数这些基因中也与许多BCR共定位,而SARs与MLL、AF4、AF9、AML1、ETO和ABL中的BCR相关,但与BCR基因无关。此外,MLL、AML1和ETO中的BCR具有解开双链DNA的最低自由能水平。迄今为止分析的几乎所有白血病中的染色体易位在断点处都没有一致的同源序列,而在所有这些染色体易位断点连接处都存在强烈的非同源末端连接(NHEJ)修复特征;这包括每个断点处的小缺失和重复,以及每个染色体易位基因组连接处的微同源性和非模板插入。令人惊讶的是,同一易位中这些缺失和重复的大小在原发性白血病中比在治疗相关白血病中要大得多。我们提出非同源染色体重组模型作为导致白血病中染色体易位的机制之一。开放染色质区域(DNase I超敏位点)、SARs或低能量水平区域的topo II切割位点易受某些基因毒性或其他因素影响,成为初始断裂位点,随后是切除末端连接修复过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验