Wagner Nicholas L, Wüest Andrea, Christov Ivan P, Popmintchev Tenio, Zhou Xibin, Murnane Margaret M, Kapteyn Henry C
Department of Physics, JILA, and National Science Foundation Engineering Research Center in Extreme-Ultraviolet Science and Technology, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440, USA.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13279-85. doi: 10.1073/pnas.0605178103. Epub 2006 Aug 8.
We report a previously undescribed spectroscopic probe that makes use of electrons rescattered during the process of high-order harmonic generation. We excite coherent vibrations in SF(6) using impulsive stimulated Raman scattering with a short laser pulse. A second, more intense laser pulse generates high-order harmonics of the fundamental laser, at wavelengths of approximately 20-50 nm. The high-order harmonic yield is observed to oscillate, at frequencies corresponding to all of the Raman-active modes of SF(6), with an asymmetric mode most visible. The data also show evidence of relaxation dynamics after impulsive excitation of the molecule. Theoretical modeling indicates that the high harmonic yield should be modulated by both Raman and infrared-active vibrational modes. Our results indicate that high harmonic generation is a very sensitive probe of vibrational dynamics and may yield more information simultaneously than conventional ultrafast spectroscopic techniques. Because the de Broglie wavelength of the recolliding electron is on the order of interatomic distances, i.e., approximately 1.5 A, small changes in the shape of the molecule lead to large changes in the high harmonic yield. This work therefore demonstrates a previously undescribed spectroscopic technique for probing ultrafast internal dynamics in molecules and, in particular, on the chemically important ground-state potential surface.
我们报道了一种此前未被描述的光谱探针,它利用了在高次谐波产生过程中重新散射的电子。我们使用短激光脉冲通过脉冲受激拉曼散射激发六氟化硫(SF₆)中的相干振动。第二个更强的激光脉冲产生基频激光的高次谐波,波长约为20 - 50纳米。观察到高次谐波产率在与六氟化硫所有拉曼活性模式相对应的频率处振荡,其中一种非对称模式最为明显。数据还显示了分子脉冲激发后弛豫动力学的证据。理论建模表明,高次谐波产率应受拉曼活性和红外活性振动模式的调制。我们的结果表明,高次谐波产生是振动动力学的一种非常灵敏的探针,可能比传统的超快光谱技术能同时产生更多信息。由于再碰撞电子的德布罗意波长在原子间距离的量级上,即约1.5埃,分子形状的微小变化会导致高次谐波产率的大幅变化。因此,这项工作展示了一种此前未被描述的光谱技术,用于探测分子中的超快内部动力学,特别是在具有化学重要性的基态势能面上。