Suppr超能文献

采用高次谐波干涉法进行化学反应。

Following a chemical reaction using high-harmonic interferometry.

机构信息

Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.

出版信息

Nature. 2010 Jul 29;466(7306):604-7. doi: 10.1038/nature09185.

Abstract

The study of chemical reactions on the molecular (femtosecond) timescale typically uses pump laser pulses to excite molecules and subsequent probe pulses to interrogate them. The ultrashort pump pulse can excite only a small fraction of molecules, and the probe wavelength must be carefully chosen to discriminate between excited and unexcited molecules. The past decade has seen the emergence of new methods that are also aimed at imaging chemical reactions as they occur, based on X-ray diffraction, electron diffraction or laser-induced recollision--with spectral selection not available for any of these new methods. Here we show that in the case of high-harmonic spectroscopy based on recollision, this apparent limitation becomes a major advantage owing to the coherent nature of the attosecond high-harmonic pulse generation. The coherence allows the unexcited molecules to act as local oscillators against which the dynamics are observed, so a transient grating technique can be used to reconstruct the amplitude and phase of emission from the excited molecules. We then extract structural information from the amplitude, which encodes the internuclear separation, by quantum interference at short times and by scattering of the recollision electron at longer times. The phase records the attosecond dynamics of the electrons, giving access to the evolving ionization potentials and the electronic structure of the transient molecule. In our experiment, we are able to document a temporal shift of the high-harmonic field of less than an attosecond (1 as = 10(-18) s) between the stretched and compressed geometry of weakly vibrationally excited Br(2) in the electronic ground state. The ability to probe structural and electronic features, combined with high time resolution, make high-harmonic spectroscopy ideally suited to measuring coupled electronic and nuclear dynamics occurring in photochemical reactions and to characterizing the electronic structure of transition states.

摘要

分子(飞秒)时间尺度上的化学反应研究通常使用泵浦激光脉冲来激发分子,随后使用探测脉冲来探测它们。超短的泵浦脉冲只能激发一小部分分子,而探测波长必须仔细选择,以区分激发和未激发的分子。过去十年出现了一些新的方法,这些方法也旨在实时成像化学反应,其基于 X 射线衍射、电子衍射或激光诱导再碰撞——而这些新方法都无法进行光谱选择。在这里,我们表明,在基于再碰撞的高次谐波光谱学中,由于阿秒高次谐波脉冲产生的相干性质,这种明显的限制成为了一个主要优势。相干性允许未激发的分子充当局部振荡器,从而可以观察到动力学,因此可以使用瞬态光栅技术来重建激发分子的发射强度和相位。然后,我们从振幅中提取结构信息,该信息通过短时间内的量子干涉和长时间内的再碰撞电子散射来编码核间分离。相位记录电子的阿秒动力学,从而获得不断变化的电离势和瞬态分子的电子结构。在我们的实验中,我们能够记录到在电子基态下弱振动激发的 Br(2)分子的伸展和压缩几何形状之间的高次谐波场的时间位移小于 1 阿秒(1 as = 10(-18) s)。探测结构和电子特征的能力与高时间分辨率相结合,使高次谐波光谱学非常适合测量光化学反应中发生的电子和核动力学的耦合,以及表征过渡态的电子结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验