Suppr超能文献

Peptidergic modulation of mechanotransduction in rat arterial baroreceptors.

作者信息

Yang M Y, Andresen M C

机构信息

Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.

出版信息

Circ Res. 1990 Mar;66(3):804-13. doi: 10.1161/01.res.66.3.804.

Abstract

Regularly discharging baroreceptors in a rat in vitro aortic arch preparation were exposed to increasing concentrations of one of four vasoactive peptides: angiotensin II, arginine vasopressin, atrial natriuretic factor, or substance P. Slow ramps of pressure evoked discharge responses in single-fiber baroreceptors. Instantaneous discharge frequency was measured simultaneously with aortic diameter and pressure. During constriction induced by angiotensin II or arginine vasopressin, baroreceptor diameter threshold (Dth) decreased and pressure threshold (Pth) tended to increase; these effects were reduced or eliminated by nitroprusside. Atrial natriuretic factor and substance P by themselves were without effect on vessel diameter or on baroreceptor discharge. In preparations preconstricted with a moderate concentration of phenylephrine (10(-8) M), atrial natriuretic factor reduced the phenylephrine-induced constriction and increased Dth and decreased Pth. Substance P, even at high concentrations, was less effective than atrial natriuretic factor in reducing phenylephrine constriction and in altering baroreceptor discharge. Baroreceptor gain was unaffected by any of these peptides. Thus, changes in smooth muscle tone altered mechanotransduction by shifts in 1) the vessel pressure-diameter relation and 2) baroreceptor threshold requirements (Pth and Dth). Changes in the baroreceptor mechanical threshold (Dth) reduced the effects on Pth expected from changes in vessel wall mechanics. Pth reflects the net effects of vessel wall and Dth changes. Pth generally increased during constrictions and decreased during dilations. The changes in Dth and their selectivity (no changes in gain) during vasoactive peptide action closely resemble rapid resetting of baroreceptors. We propose that vascular smooth muscle lies in a parallel arrangement with aortic baroreceptors and that a common compensatory mechanism regulates Dth during sustained changes in vessel diameter. Activation of smooth muscle and reductions in transmural pressure would reduce loading of baroreceptors, and the proposed compensatory mechanism would tend to keep discharge constant by decreasing Dth. Our experiments, however, cannot distinguish between hypotheses for local micromechanical changes in coupling or for changes modulating excitability within the baroreceptor neuron itself as the basis for Dth adjustments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验