Suppr超能文献

拟南芥APETALA2和微小RNA172在本氏烟草中的表达诱导的花形态建成缺陷

Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.

作者信息

Mlotshwa Sizolwenkosi, Yang Zhiyong, Kim Yunju, Chen Xuemei

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.

出版信息

Plant Mol Biol. 2006 Jul;61(4-5):781-93. doi: 10.1007/s11103-006-0049-0.

Abstract

Floral patterning and morphogenesis are controlled by many transcription factors including floral homeotic proteins, by which floral organ identity is determined. Recent studies have uncovered widespread regulation of transcription factors by microRNAs (miRNAs), approximately 21-nucleotide non-coding RNAs that regulate protein-coding RNAs through transcript cleavage and/or translational inhibition. The regulation of the floral homeotic gene APETALA2 (AP2) by miR172 is crucial for normal Arabidopsis flower development and is likely to be conserved across plant species. Here we probe the activity of the AP2/miR172 regulatory circuit in a heterologous Solanaceae species, Nicotiana benthamiana. We generated transgenic N. benthamiana lines expressing Arabidopsis wild type AP2 (35S::AP2), miR172-resistant AP2 mutant (35S::AP2m3) and MIR172a-1 (35S::MIR172) under the control of the cauliflower mosaic virus 35S promoter. 35S::AP2m3 plants accumulated high levels of AP2 mRNA and protein and exhibited floral patterning defects that included proliferation of numerous petals, stamens and carpels indicating loss of floral determinacy. On the other hand, nearly all 35S::AP2 plants accumulated barely detectable levels of AP2 mRNA or protein and were essentially non-phenotypic. Overall, the data indicated that expression of the wild type Arabidopsis AP2 transgene was repressed at the mRNA level by an endogenous N. benthamiana miR172 homologue that could be detected using Arabidopsis miR172 probe. Interestingly, 35S::MIR172 plants had sepal-to-petal transformations and/or more sepals and petals, suggesting interference with N. benthamiana normal floral homeotic gene function in perianth organs. Our studies uncover the potential utility of the Arabidopsis AP2/miR172 system as a tool for manipulation of floral architecture and flowering time in non-model plants.

摘要

花的形态建成和模式受包括花同源异型蛋白在内的多种转录因子控制,这些转录因子决定了花器官的特性。最近的研究发现,微小RNA(miRNA)对转录因子有广泛的调控作用,miRNA是约21个核苷酸的非编码RNA,通过转录本切割和/或翻译抑制来调控蛋白质编码RNA。miR172对花同源异型基因APETALA2(AP2)的调控对于拟南芥花的正常发育至关重要,并且可能在植物物种间保守。在此,我们在异源茄科植物本氏烟草中探究AP2/miR172调控回路的活性。我们构建了在花椰菜花叶病毒35S启动子控制下表达拟南芥野生型AP2(35S::AP2)、miR172抗性AP2突变体(35S::AP2m3)和MIR172a - 1(35S::MIR172)的转基因本氏烟草株系。35S::AP2m3植株积累了高水平的AP2 mRNA和蛋白质,并表现出花形态建成缺陷,包括大量花瓣、雄蕊和心皮的增殖,表明花的确定性丧失。另一方面,几乎所有35S::AP2植株积累的AP2 mRNA或蛋白质水平几乎检测不到,基本没有表型。总体而言,数据表明野生型拟南芥AP2转基因的表达在mRNA水平上受到本氏烟草内源性miR172同源物的抑制,该同源物可用拟南芥miR172探针检测到。有趣的是,35S::MIR172植株出现萼片到花瓣的转变和/或更多的萼片和花瓣,表明对本氏烟草花被器官中正常花同源异型基因功能产生了干扰。我们的研究揭示了拟南芥AP2/miR172系统作为一种工具在非模式植物中操纵花结构和开花时间的潜在用途。

相似文献

2
The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning.
Plant Sci. 2014 Feb;215-216:29-38. doi: 10.1016/j.plantsci.2013.10.010. Epub 2013 Oct 25.
3
On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development.
Development. 2010 Nov;137(21):3633-42. doi: 10.1242/dev.036673. Epub 2010 Sep 28.
6
MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis.
New Phytol. 2022 Jul;235(1):356-371. doi: 10.1111/nph.18111. Epub 2022 Apr 12.
7
Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes.
Plant Cell. 2003 Nov;15(11):2730-41. doi: 10.1105/tpc.016238. Epub 2003 Oct 10.
8
POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network.
PLoS Genet. 2013;9(1):e1003218. doi: 10.1371/journal.pgen.1003218. Epub 2013 Jan 17.
9
Evolution of the APETALA2 Gene Lineage in Seed Plants.
Mol Biol Evol. 2016 Jul;33(7):1818-32. doi: 10.1093/molbev/msw059. Epub 2016 Mar 29.
10

引用本文的文献

1
A glimpse of light on the mystery of regulating temperate fruit tree blooming time.
Hortic Res. 2024 Aug 30;11(12):uhae258. doi: 10.1093/hr/uhae258. eCollection 2024 Dec.
2
euAP2a, a key gene that regulates flowering time in peach () by modulating thermo-responsive transcription programming.
Hortic Res. 2024 Apr 8;11(5):uhae076. doi: 10.1093/hr/uhae076. eCollection 2024 May.
3
Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants.
Front Genet. 2023 Oct 10;14:1272446. doi: 10.3389/fgene.2023.1272446. eCollection 2023.
6
The Roles of Floral Organ Genes in Regulating Rosaceae Fruit Development.
Front Plant Sci. 2022 Jan 5;12:644424. doi: 10.3389/fpls.2021.644424. eCollection 2021.
8
Non-Coding RNAs in Response to Drought Stress.
Int J Mol Sci. 2021 Nov 20;22(22):12519. doi: 10.3390/ijms222212519.
9
The APETALA2 homolog CaFFN regulates flowering time in pepper.
Hortic Res. 2021 Nov 1;8(1):208. doi: 10.1038/s41438-021-00643-7.
10
Molecular Mechanism of Slow Vegetative Growth in Tetraploid.
Genes (Basel). 2020 Nov 27;11(12):1417. doi: 10.3390/genes11121417.

本文引用的文献

1
Control of translation and mRNA degradation by miRNAs and siRNAs.
Genes Dev. 2006 Mar 1;20(5):515-24. doi: 10.1101/gad.1399806.
3
APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.
Plant Cell. 2006 Feb;18(2):295-307. doi: 10.1105/tpc.105.038398. Epub 2005 Dec 30.
4
Molecular mechanisms of flower development: an armchair guide.
Nat Rev Genet. 2005 Sep;6(9):688-98. doi: 10.1038/nrg1675.
5
MicroRNA biogenesis and function in plants.
FEBS Lett. 2005 Oct 31;579(26):5923-31. doi: 10.1016/j.febslet.2005.07.071. Epub 2005 Aug 9.
6
Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem.
Plant Cell. 2005 Aug;17(8):2271-80. doi: 10.1105/tpc.105.032623. Epub 2005 Jun 24.
7
microRNA172 down-regulates glossy15 to promote vegetative phase change in maize.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7. doi: 10.1073/pnas.0503927102. Epub 2005 Jun 15.
8
Antiquity of microRNAs and their targets in land plants.
Plant Cell. 2005 Jun;17(6):1658-73. doi: 10.1105/tpc.105.032185. Epub 2005 Apr 22.
9
Specific effects of microRNAs on the plant transcriptome.
Dev Cell. 2005 Apr;8(4):517-27. doi: 10.1016/j.devcel.2005.01.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验