Bokma Folmer
Groningen Bioinformatics Centre and University Medical Centre, The Netherlands.
J Theor Biol. 2006 Dec 7;243(3):449-54. doi: 10.1016/j.jtbi.2006.06.023. Epub 2006 Jul 11.
Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process, parametric functions to estimate extinction rates from phylogenies turned out to be complex and often difficult to derive. Moreover, these parametric functions are specific to a particular process (e.g. complete species level phylogeny with constant birth and death rates) and a particular type of data (e.g. times between bifurcations). Here, it is shown that artificial neural networks can substitute for parametric estimation functions once they have been sufficiently trained on simulated data. This technique can in principle be used for different processes and data types, and because it circumvents the time-consuming and difficult task of deriving parametric estimation functions, it may greatly extend the possibilities to make macro-evolutionary inferences from molecular phylogenies. This novel approach is explained, applied to estimate speciation and extinction rates from a molecular phylogeny of the reef fish genus Naso (Acanturidae), and its performance is compared to that of maximum likelihood estimation.
分子系统发育通常只包含现存物种,但它们能让我们推断过去的灭绝速率,因为新起源的物种比古老物种更不容易灭绝。尽管假定的基础物种形成 - 灭绝过程结构简单,但从系统发育推断灭绝速率的参数函数却很复杂,且往往难以推导。此外,这些参数函数特定于某个特定过程(例如具有恒定出生和死亡率的完整物种水平系统发育)和特定类型的数据(例如分支之间的时间)。在此表明,人工神经网络一旦在模拟数据上得到充分训练,就可以替代参数估计函数。该技术原则上可用于不同的过程和数据类型,并且由于它规避了推导参数估计函数这一耗时且困难的任务,它可能极大地扩展从分子系统发育进行宏观进化推断的可能性。本文解释了这种新方法,并将其应用于根据鼻鱼属(刺尾鱼科)的分子系统发育来估计物种形成和灭绝速率,还将其性能与最大似然估计的性能进行了比较。