Suppr超能文献

Molecular effects of dimethylanatoxin on the peripheral nicotinic acetylcholine receptor.

作者信息

Costa A C, Swanson K L, Aracava Y, Aronstam R S, Albuquerque E X

机构信息

Laboratory of Molecular Pharmacology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil.

出版信息

J Pharmacol Exp Ther. 1990 Feb;252(2):507-16.

PMID:1690291
Abstract

N,N-dimethylanatoxin (DMAnTX), the quaternary derivative of the potent nicotinic agonist (+)-anatoxin-a (AnTX), has been evaluated for potency and efficacy at nicotinic acetylcholine receptors of frog motor endplates and Torpedo electric organs. DMAnTX was only weakly effective in eliciting contracture of the frog rectus abdominis and was orders of magnitude less potent than AnTX. Biochemical assay showed that DMAnTX was a weak inhibitor of [125I]alpha-bungarotoxin binding to the receptors in frog muscle and Torpedo electroplaque membranes: the IC50 values were 60 and 14 microM, respectively. A low frequency of single channel currents recorded from isolated interosseal fibers at concentrations from 20 to 100 microM of DMAnTX and the stimulation of [3H]perhydrohistrionicotoxin [( 3H]H12-HTX) binding (half-maximal at 0.3 microM) confirmed the weak activation of the receptor. DMAnTX also exhibited antagonist effects. In muscle twitch assays, 100 microM of DMAnTX effectively decreased the tension induced by nerve stimulation, although DMAnTX did not affect muscle membrane action potentials. The binding of [3H] perhydrohistrionicotoxin was also inhibited at high micromolar concentrations of DMAnTX. Combination of DMAnTX with acetylcholine in single channel current experiments demonstrated that DMAnTX possesses ion channel blocking properties, which become apparent at low micromolar concentrations, and DMAnTX enhances the desensitization induced by acetylcholine above 10 microM AnTX. The difference in agonist potency between AnTX and DMAnTX may be attributed to a change in conformation of the molecular skeleton induced by the N-methyl groups.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验