Suppr超能文献

具有卓越催化和电容活性的纳米多孔材料的电化学锂化合成。

Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity.

作者信息

Hu Yong-Sheng, Guo Yu-Guo, Sigle Wilfried, Hore Sarmimala, Balaya Palani, Maier Joachim

机构信息

Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.

出版信息

Nat Mater. 2006 Sep;5(9):713-7. doi: 10.1038/nmat1709. Epub 2006 Aug 13.

Abstract

Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating (chelating agents, surfactants, block copolymers and so on) and hard templating (porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO2, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO2, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO2 (refs 19,20).

摘要

在过去二十年中,纳米多孔材料引起了极大的技术关注,这主要归功于其广泛的应用:它们被用作催化剂、分子筛、分离器和气体传感器,以及用于电子和电化学装置。到目前为止,报道的大多数纳米多孔材料的合成方法都集中在模板辅助的自下而上的过程,包括软模板法(螯合剂、表面活性剂、嵌段共聚物等)和硬模板法(多孔氧化铝、碳纳米管和纳米多孔材料)。在这里,我们利用锂电池在深度放电时隐含发生的一种机制,将其发展成为一种室温无模板方法,该方法不仅在合成过渡金属方面具有广泛的适用性,而且在合成具有大表面积和明显纳米孔隙率以及前所未有的性能的金属氧化物方面也具有广泛的适用性。纳米多孔铂和二氧化钌的合成证明了这种自上而下方法的强大功能,二者均表现出优异的性能:所制备的铂用作甲醇氧化的电催化剂时表现出出色的性能,而二氧化钌用作超级电容器电极材料时,其性能明显优于先前报道的非水合二氧化钌(参考文献19,20)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验