Nicola Ernesto M, Bär Markus, Engel Harald
Institut für Theoretische Physik, Technische Universität Berlin, PN 7-1 Hardenbergstrasse 36, D-10623 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066225. doi: 10.1103/PhysRevE.73.066225. Epub 2006 Jun 28.
We study spatiotemporal patterns resulting from instabilities induced by nonlocal spatial coupling in the Oregonator model of the light-sensitive Belousov-Zhabotinsky reaction. In this system, nonlocal coupling can be externally imposed by means of an optical feedback loop which links the intensity of locally applied illumination with the activity in a certain vicinity of a particular point weighted by a given coupling function. This effect is included in the three-variable Oregonator model by an additional integral term in the photochemically induced bromide flow. A linear stability analysis of this modified Oregonator model predicts that wave and Turing instabilities of the homogeneous steady state can be induced for experimentally realistic parameter values. In particular, we find that a long-range inhibition in the optical feedback leads to a Turing instability, while a long-range activation induces wave patterns. Using a weakly nonlinear analysis, we derive amplitude equations for the wave instability which are valid close to the instability threshold. Therein, we find that the wave instability occurs supercritically or subcritically and that traveling waves are preferred over standing waves. The results of the theoretical analysis are in good agreement with numerical simulations of the model near the wave instability threshold. For larger distances from threshold, a secondary breathing instability is found for traveling waves.
我们研究了在光敏感的贝洛索夫-扎博廷斯基反应的俄勒冈振子模型中,由非局部空间耦合引起的不稳定性所导致的时空模式。在这个系统中,非局部耦合可以通过一个光学反馈回路从外部施加,该回路将局部施加照明的强度与特定点附近某一区域内由给定耦合函数加权的活动联系起来。这种效应通过光化学诱导的溴化物流中的一个附加积分项被纳入三变量俄勒冈振子模型。对这个修正后的俄勒冈振子模型进行的线性稳定性分析预测,对于实验上现实的参数值,可以诱导出均匀稳态的波动和图灵不稳定性。特别地,我们发现光学反馈中的长程抑制会导致图灵不稳定性,而长程激活会诱导波动模式。使用弱非线性分析,我们推导出了波动不稳定性的振幅方程,这些方程在接近不稳定性阈值时是有效的。在这些方程中,我们发现波动不稳定性以超临界或亚临界方式出现,并且行波比驻波更受青睐。理论分析结果与波动不稳定性阈值附近模型的数值模拟结果非常吻合。对于远离阈值的情况,在行波中发现了二次呼吸不稳定性。