Sha Qiuying, Zhu Xiaofeng, Zuo Yijun, Cooper Richard, Zhang Shuanglin
Department of Mathematical Sciences, Michigan Technological University, Houghton, 49931, USA.
Ann Hum Genet. 2006 Sep;70(Pt 5):677-92. doi: 10.1111/j.1469-1809.2006.00262.x.
Complex diseases are presumed to be the results of the interaction of several genes and environmental factors, with each gene only having a small effect on the disease. Mapping complex disease genes therefore becomes one of the greatest challenges facing geneticists. Most current approaches of association studies essentially evaluate one marker or one gene (haplotype approach) at a time. These approaches ignore the possibility that effects of multilocus functional genetic units may play a larger role than a single-locus effect in determining trait variability. In this article, we propose a Combinatorial Searching Method (CSM) to detect a set of interacting loci (may be unlinked) that predicts the complex trait. In the application of the CSM, a simple filter is used to filter all the possible locus-sets and retain the candidate locus-sets, then a new objective function based on the cross-validation and partitions of the multi-locus genotypes is proposed to evaluate the retained locus-sets. The locus-set with the largest value of the objective function is the final locus-set and a permutation procedure is performed to evaluate the overall p-value of the test for association between the final locus-set and the trait. The performance of the method is evaluated by simulation studies as well as by being applied to a real data set. The simulation studies show that the CSM has reasonable power to detect high-order interactions. When the CSM is applied to a real data set to detect the locus-set (among the 13 loci in the ACE gene) that predicts systolic blood pressure (SBP) or diastolic blood pressure (DBP), we found that a four-locus gene-gene interaction model best predicts SBP with an overall p-value = 0.033, and similarly a two-locus gene-gene interaction model best predicts DBP with an overall p-value = 0.045.
复杂疾病被认为是多个基因与环境因素相互作用的结果,每个基因对疾病的影响都很小。因此,定位复杂疾病基因成为遗传学家面临的最大挑战之一。目前大多数关联研究方法本质上是一次评估一个标记或一个基因(单倍型方法)。这些方法忽略了多位点功能遗传单位的效应在决定性状变异性方面可能比单一位点效应发挥更大作用的可能性。在本文中,我们提出了一种组合搜索方法(CSM)来检测一组相互作用的位点(可能不连锁),这些位点可预测复杂性状。在CSM的应用中,使用一个简单的过滤器来筛选所有可能的位点集并保留候选位点集,然后基于交叉验证和多位点基因型的划分提出一个新的目标函数来评估保留的位点集。目标函数值最大的位点集即为最终的位点集,并通过置换程序来评估最终位点集与性状之间关联测试的总体p值。通过模拟研究以及应用于真实数据集来评估该方法的性能。模拟研究表明,CSM具有合理的检测高阶相互作用的能力。当将CSM应用于真实数据集以检测预测收缩压(SBP)或舒张压(DBP)的位点集(在ACE基因的13个位点中)时,我们发现一个四位点基因 - 基因相互作用模型对SBP的预测效果最佳,总体p值 = 0.033,类似地,一个两位点基因 - 基因相互作用模型对DBP的预测效果最佳,总体p值 = 0.045。