Suppr超能文献

利用结构描述符对有机化合物抗侵袭活性进行定量构效关系建模。

QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.

作者信息

Katritzky Alan R, Kuanar Minati, Dobchev Dimitar A, Vanhoecke Barbara W A, Karelson Mati, Parmar Virinder S, Stevens Christian V, Bracke Marc E

机构信息

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.

出版信息

Bioorg Med Chem. 2006 Oct 15;14(20):6933-9. doi: 10.1016/j.bmc.2006.06.036.

Abstract

The anti-invasive activity of 139 compounds was correlated by an artificial neural network approach with descriptors calculated solely from the molecular structures using CODESSA Pro. The best multilinear regression method implemented in CODESSA Pro was used for a pre-selection of descriptors. The resulting nonlinear (artificial neural network) QSAR model predicted the exact class for 66 (71%) of the training set of 93 compounds and 32 (70%) of validation set of 46 compounds. The standard deviation ratios for the both training and validation sets are less than unity, indicating a satisfactory predictive capability for classification of the nature of the anti-invasive activity data. The proposed model can be used for the prediction of the anti-invasive activity of novel classes of compounds enabling a virtual screening of large databases of anticancer drugs.

摘要

采用人工神经网络方法,将139种化合物的抗侵袭活性与仅使用CODESSA Pro从分子结构计算得到的描述符进行关联。使用CODESSA Pro中实现的最佳多元线性回归方法对描述符进行预筛选。所得的非线性(人工神经网络)QSAR模型对93种化合物训练集的66种(71%)以及46种化合物验证集的32种(70%)准确分类。训练集和验证集的标准差比均小于1,表明该模型对抗侵袭活性数据性质的分类具有令人满意的预测能力。所提出的模型可用于预测新型化合物的抗侵袭活性,从而实现对大型抗癌药物数据库的虚拟筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验