Binzoni T, Leung T S, Gandjbakhche A H, Rüfenacht D, Delpy D T
Département des Neurosciences Fondamentales, Centre Médical Universitaire, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
Phys Med Biol. 2006 Sep 7;51(17):N313-22. doi: 10.1088/0031-9155/51/17/N04. Epub 2006 Aug 15.
Monte Carlo (MC) simulations are often at the heart of the testing procedure in biomedical optics. One of the critical points in MC simulations is to define the new photon direction after each scattering event. One of the most popular solutions is to use the Henyey-Greenstein phase function or some linear combinations of it. In this note, we demonstrate that randomly generating the angle defining the new direction of a photon after a collision, by means of the Henyey-Greenstein phase function, is not equivalent to generating the cosine of this angle, as is classically done. In practice, it is demonstrated that for a nearly isotropic medium (asymmetry parameter g approximately 0) this discrepancy is not large, however for an anisotropic medium as is typically found in vivo (e.g. g = 0.98) the two methods give completely different results.
蒙特卡罗(MC)模拟通常是生物医学光学测试程序的核心。MC模拟中的关键点之一是在每次散射事件后定义新的光子方向。最流行的解决方案之一是使用亨耶-格林斯坦相位函数或其一些线性组合。在本笔记中,我们证明,通过亨耶-格林斯坦相位函数随机生成碰撞后定义光子新方向的角度,与传统做法生成该角度的余弦并不等效。实际上,已证明对于近各向同性介质(不对称参数g约为0),这种差异不大,然而对于体内典型的各向异性介质(例如g = 0.98),这两种方法给出的结果完全不同。