Ristilä Mikael, Matxain Jon M, Strid Ake, Eriksson Leif A
Department of Natural Sciences and Orebro Life Science Center, Orebro University, S-701 82 Orebro, Sweden.
J Phys Chem B. 2006 Aug 24;110(33):16774-80. doi: 10.1021/jp062800n.
The key electronic and spectroscopic properties of vitamin B(6) (pyridoxine) and some of its main charged and protonated/deprotonated species are explored using hybrid density functional theory (DFT) methods including polarized solvation models. It is found that the dominant species at low pH is the N(1)-protonated form and, at high pH, the O(3)(')-deprotonated compound. Computed and experimental UV-spectra for these species (experimental spectra recorded at pH 1.7 and 11.1, respectively) show a very close resemblance. At pH 4.3, the protonated species dominates, but with onset of the zwitterionic oxo form which is also the dominant species at neutral pH. The computational studies furthermore show that neither a polarized continuum model of the polar aqueous solvent or explicit hydrogen bonding through additional water molecules are sufficient to describe accurately the spectrum at physiological pH. Instead, Na(+) and Cl(-) counterions were required to give a blue-shift of approximately 0.15 eV.
利用包括极化溶剂化模型在内的杂化密度泛函理论(DFT)方法,探索了维生素B6(吡哆醇)及其一些主要带电和质子化/去质子化物种的关键电子和光谱性质。研究发现,低pH值下的主要物种是N(1)-质子化形式,而在高pH值下,主要物种是O(3)'-去质子化化合物。这些物种的计算紫外光谱和实验紫外光谱(分别在pH 1.7和11.1下记录的实验光谱)显示出非常相似的特征。在pH 4.3时,质子化物种占主导,但两性离子氧代形式开始出现,该形式在中性pH值下也是主要物种。此外,计算研究表明,极性水性溶剂的极化连续介质模型或通过额外水分子的明确氢键作用都不足以准确描述生理pH值下的光谱。相反,需要Na(+)和Cl(-)抗衡离子才能产生约0.15 eV的蓝移。