Egelman Edward H
Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, P.O. Box 800733, Charlottesville, VA 22908-0733, USA.
J Struct Biol. 2007 Jan;157(1):83-94. doi: 10.1016/j.jsb.2006.05.015. Epub 2006 Jul 11.
Many important biological macromolecules exist as helical polymers. Examples are actin, tubulin, myosin, RecA, Rad51, flagellin, pili, and filamentous bacteriophage. The first application of three-dimensional reconstruction from electron microscopic images was to a helical polymer, and a number of laboratories today are using helical tubes of integral membrane proteins for solving the structure of these proteins in the electron microscope at near atomic resolution. We have developed a method to analyze and reconstruct electron microscopic images of macromolecular helical polymers, the iterative helical real space reconstruction (IHRSR) algorithm. We can show that when there is disorder or heterogeneity, when the specimens diffract weakly, or when Bessel functions overlap, we can do far better with our method than can be done using traditional Fourier-Bessel approaches. In many cases, structures that were not even amenable to analysis can be solved at fairly high resolution using our method. The problems inherent in the traditional approach are discussed, and examples are presented illustrating how the IHRSR approach surmounts these problems.
许多重要的生物大分子以螺旋聚合物的形式存在。例如肌动蛋白、微管蛋白、肌球蛋白、RecA、Rad51、鞭毛蛋白、菌毛和丝状噬菌体。电子显微镜图像三维重建的首次应用就是针对一种螺旋聚合物,如今许多实验室正在使用整合膜蛋白的螺旋管在电子显微镜下以接近原子分辨率解析这些蛋白的结构。我们开发了一种分析和重建大分子螺旋聚合物电子显微镜图像的方法,即迭代螺旋实空间重建(IHRSR)算法。我们可以证明,当存在无序或异质性、标本衍射较弱或贝塞尔函数重叠时,与使用传统傅里叶 - 贝塞尔方法相比,我们的方法能取得更好的效果。在许多情况下,使用我们的方法可以以相当高的分辨率解析甚至原本难以分析的结构。文中讨论了传统方法固有的问题,并给出了示例说明IHRSR方法如何克服这些问题。