Kraft Robert, Escobar Mindy M, Narro Martha L, Kurtis Jackie L, Efrat Alon, Barnard Kobus, Restifo Linda L
Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
J Neurosci. 2006 Aug 23;26(34):8734-47. doi: 10.1523/JNEUROSCI.2106-06.2006.
Subtle cellular phenotypes in the CNS may evade detection by routine histopathology. Here, we demonstrate the value of primary culture for revealing genetically determined neuronal phenotypes at high resolution. Gamma neurons of Drosophila melanogaster mushroom bodies (MBs) are remodeled during metamorphosis under the control of the steroid hormone 20-hydroxyecdysone (20E). In vitro, wild-type gamma neurons retain characteristic morphogenetic features, notably a single axon-like dominant primary process and an arbor of short dendrite-like processes, as determined with microtubule-polarity markers. We found three distinct genetically determined phenotypes of cultured neurons from grossly normal brains, suggesting that subtle in vivo attributes are unmasked and amplified in vitro. First, the neurite outgrowth response to 20E is sexually dimorphic, being much greater in female than in male gamma neurons. Second, the gamma neuron-specific "naked runt" phenotype results from transgenic insertion of an MB-specific promoter. Third, the recessive, pan-neuronal "filagree" phenotype maps to singed, which encodes the actin-bundling protein fascin. Fascin deficiency does not impair the 20E response, but neurites fail to maintain their normal, nearly straight trajectory, instead forming curls and hooks. This is accompanied by abnormally distributed filamentous actin. This is the first demonstration of fascin function in neuronal morphogenesis. Our findings, along with the regulation of human Fascin1 (OMIM 602689) by CREB (cAMP response element-binding protein) binding protein, suggest FSCN1 as a candidate gene for developmental brain disorders. We developed an automated method of computing neurite curvature and classifying neurons based on curvature phenotype. This will facilitate detection of genetic and pharmacological modifiers of neuronal defects resulting from fascin deficiency.
中枢神经系统中细微的细胞表型可能会逃过常规组织病理学的检测。在此,我们证明了原代培养对于在高分辨率下揭示基因决定的神经元表型的价值。果蝇蘑菇体(MBs)的γ神经元在变态发育过程中受类固醇激素20-羟基蜕皮激素(20E)的控制而发生重塑。在体外,野生型γ神经元保留了特征性的形态发生特征,特别是一个类似轴突的单一主导初级突起和一个由短的类似树突的突起组成的树突分支,这是通过微管极性标记确定的。我们发现来自大体正常大脑的培养神经元有三种不同的基因决定表型,这表明体内细微的特征在体外被揭示并放大了。首先,对20E的神经突生长反应存在性别差异,雌性γ神经元的反应比雄性γ神经元大得多。其次,γ神经元特异性的“裸矮 runt”表型是由MB特异性启动子的转基因插入导致的。第三,隐性的、全神经元的“丝状 filagree”表型定位到 singed,该基因编码肌动蛋白束蛋白fascin。Fascin缺乏并不损害对20E的反应,但神经突无法维持其正常的、近乎笔直的轨迹,而是形成卷曲和钩状。这伴随着丝状肌动蛋白的异常分布。这是首次证明fascin在神经元形态发生中的功能。我们的发现,以及人类Fascin1(OMIM 602689)受CREB(cAMP反应元件结合蛋白)结合蛋白调控,提示FSCN1作为发育性脑部疾病的候选基因。我们开发了一种自动计算神经突曲率并根据曲率表型对神经元进行分类的方法。这将有助于检测由fascin缺乏导致的神经元缺陷的遗传和药理学修饰因子。