Muthén Bengt
University of California, Los Angeles, CA, USA.
Addiction. 2006 Sep;101 Suppl 1:6-16. doi: 10.1111/j.1360-0443.2006.01583.x.
This paper discusses the representation of diagnostic criteria using categorical and dimensional statistical models. Conventional modeling using categorical or continuous latent variables in the form of latent class analysis and factor (IRT) analysis has limitations for the analysis of diagnostic criteria.
New hybrid models are discussed which provide both categorical and dimensional representations in the same model using mixture models. Conventional and new models are applied and compared using recent data for Diagnostic and Statistical Manual of Mental Disorders version IV (DSM-IV) alcohol dependence and abuse criteria from the National Epidemiologic Survey on Alcohol and Related Conditions. Classification results from hybrid models are compared to the DSM-IV approach of using the number of diagnostic criteria fulfilled.
It is found that new hybrid mixture models are more suitable than latent class and factor (IRT) models.
Implications for DSM-V are discussed in terms of reporting results using both categories and dimensions.
本文探讨使用分类和维度统计模型来表示诊断标准。以潜在类别分析和因子(IRT)分析形式使用分类或连续潜在变量的传统建模方法在分析诊断标准方面存在局限性。
讨论了新的混合模型,这些模型使用混合模型在同一模型中同时提供分类和维度表示。使用来自全国酒精及相关状况流行病学调查的《精神疾病诊断与统计手册》第四版(DSM-IV)酒精依赖和滥用标准的最新数据,应用并比较传统模型和新模型。将混合模型的分类结果与DSM-IV使用满足的诊断标准数量的方法进行比较。
发现新的混合混合模型比潜在类别和因子(IRT)模型更合适。
从使用类别和维度报告结果的角度讨论了对DSM-V的影响。