Suppr超能文献

使用计算流体动力学优化用于控制剪切亲和过滤的转子设计。

Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.

作者信息

Francis Patrick, Martinez D Mark, Taghipour Fariborz, Bowen Bruce D, Haynes Charles A

机构信息

Michael Smith Laboratories, Vancouver BC V6T 1Z3, Canada.

出版信息

Biotechnol Bioeng. 2006 Dec 20;95(6):1207-17. doi: 10.1002/bit.21090.

Abstract

Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput.

摘要

可控剪切亲和过滤(CSAF)是一种新型的集成处理技术,它将一个转子直接置于亲和膜色谱柱上方,以便直接从细胞培养物中捕获和纯化蛋白质。锥形转子旨在在膜表面提供均匀且可调的剪切应力,通过提供一个远离膜表面的流体动力和一个与膜表面平行的拖曳力来抑制膜污染和细胞滤饼的形成。计算流体动力学(CFD)模拟表明,原始CSAF装置(Vogel等人,2002年)中的转子在膜表面不能提供均匀的剪切应力。这导致需要以不必要的高转子速度运行系统,以在膜表面的每个径向位置达到至少0.17 Pa的所需剪切应力,从而影响了该技术的放大。将CFD模拟结果与粒子图像测速(PIV)实验以及低雷诺数条件下的数值解进行比较,以确认我们的CFD模型在一系列转子速度、滤液通量以及(层流和湍流)截留液流量范围内准确描述了CSAF装置转子腔中的流体动力学。然后结合一种求根方法进行CFD模拟,以优化CSAF转子的形状。优化后的转子几何形状在250 rpm的转速下产生接近恒定的0.17 Pa剪切应力,比原始CSAF设计低60%。这使得优化后的CSAF装置能够扩大到最大转子直径,比原始装置允许的直径大2.5倍,从而使体积通量增加了六倍多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验