Foltz K R, Asai D J
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
Cell Motil Cytoskeleton. 1990;16(1):33-46. doi: 10.1002/cm.970160106.
The determination of the structure and the expression of dynein during embryonic development are central to the understanding of dynein function. As an important first step toward these objectives, cDNAs encoding portions of sea urchin ciliary dynein were identified by antibody screening of a sea urchin cDNA expression library. Because of the complete lack of protein sequence data, it was first necessary to prove the identity of the dynein cDNAs. Of the five cDNA inserts initially cloned, one, designated P72A1, was characterized extensively. Four independent criteria demonstrated that P72A1 encoded a portion of a dynein heavy chain. (1) The beta-galactosidase-P72A1 fusion protein affinity-purified dynein-specific antibodies from crude antiserum. (2) Two other antisera to dynein, raised independently of the antiserum used to screen the cDNA library, reacted with the fusion protein. (3) A new antiserum raised against the fusion protein reacted with authentic dynein heavy chain on Western blots and stained embryonic cilia by indirect immunofluorescence microscopy. (4) Two new antisera, elicited against opposite ends of the P72A1 open reading frame, each reacted with authentic dynein heavy chain protein. Western blot analyses of dissociated dynein heavy chains revealed that P72A1 encoded a portion of the beta heavy chain. Epitope mapping experiments confirmed the identity of P72A1 as part of the beta heavy chain and also demonstrated that P72A1 encoded epitopes of the carboxyl-terminal fragment B domain of the dynein beta heavy chain. Northern blot analyses of poly(A)+ RNA revealed that P72A1 hybridized with a large RNA species ca. 12.5 kb in length. The dynein mRNA concentration increased during embryonic development. Dot blot analyses of RNA isolated at various times after embryo deciliation demonstrated that the dynein beta heavy chain mRNA accumulated rapidly in response to deciliation. The accumulation was similar to but not identical with the induction of tubulin mRNA in response to the same stimulus.
在胚胎发育过程中确定动力蛋白的结构和表达对于理解动力蛋白的功能至关重要。作为朝着这些目标迈出的重要第一步,通过对海胆cDNA表达文库进行抗体筛选,鉴定出了编码海胆纤毛动力蛋白部分片段的cDNA。由于完全缺乏蛋白质序列数据,首先必须证明动力蛋白cDNA的身份。在最初克隆的五个cDNA插入片段中,对其中一个命名为P72A1的片段进行了广泛的表征。四个独立的标准表明P72A1编码动力蛋白重链的一部分。(1)β-半乳糖苷酶-P72A1融合蛋白从粗抗血清中亲和纯化出动力蛋白特异性抗体。(2)另外两种独立于用于筛选cDNA文库的抗血清产生的抗动力蛋白抗血清与融合蛋白发生反应。(3)针对融合蛋白产生的一种新抗血清在蛋白质印迹上与真实的动力蛋白重链发生反应,并通过间接免疫荧光显微镜对胚胎纤毛进行染色。(4)针对P72A1开放阅读框两端产生的两种新抗血清,每种都与真实的动力蛋白重链蛋白发生反应。对解离的动力蛋白重链进行的蛋白质印迹分析表明,P72A1编码β重链的一部分。表位作图实验证实P72A1是β重链的一部分,并且还表明P72A1编码动力蛋白β重链羧基末端片段B结构域的表位。对聚腺苷酸加尾RNA的Northern印迹分析表明,P72A1与一种大约12.5 kb长的大RNA物种杂交。动力蛋白mRNA浓度在胚胎发育过程中增加。对胚胎去纤毛后不同时间分离的RNA进行斑点印迹分析表明,动力蛋白β重链mRNA在去纤毛后迅速积累。这种积累与相同刺激下微管蛋白mRNA的诱导相似但不完全相同。