Suppr超能文献

23 S核糖体RNA中的A位点指状结构作为转位的功能性衰减子。

The A-site finger in 23 S rRNA acts as a functional attenuator for translocation.

作者信息

Komoda Taeko, Sato Neuza S, Phelps Steven S, Namba Naoki, Joseph Simpson, Suzuki Tsutomu

机构信息

Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

J Biol Chem. 2006 Oct 27;281(43):32303-9. doi: 10.1074/jbc.M607058200. Epub 2006 Sep 1.

Abstract

Helix 38 (H38) in 23 S rRNA, which is known as the "A-site finger (ASF)," is located in the intersubunit space of the ribosomal 50 S subunit and, together with protein S13 in the 30 S subunit, it forms bridge B1a. It is known that throughout the decoding process, ASF interacts directly with the A-site tRNA. Bridge B1a becomes disrupted by the ratchet-like rotation of the 30 S subunit relative to the 50 S subunit. This occurs in association with elongation factor G (EF-G)-catalyzed translocation. To further characterize the functional role(s) of ASF, variants of Escherichia coli ribosomes with a shortened ASF were constructed. The E. coli strain bearing such ASF-shortened ribosomes had a normal growth rate but enhanced +1 frameshift activity. ASF-shortened ribosomes showed normal subunit association but higher activity in poly(U)-dependent polyphenylalanine synthesis than the wild type (WT) ribosome at limited EF-G concentrations. In contrast, other ribosome variants with shortened bridge-forming helices 34 and 68 showed weak subunit association and less efficient translational activity than the WT ribosome. Thus, the higher translational activity of ASF-shortened ribosomes is caused by the disruption of bridge B1a and is not due to weakened subunit association. Single round translocation analyses clearly demonstrated that the ASF-shortened ribosomes have higher translocation activity than the WT ribosome. These observations indicate that the intrinsic translocation activity of ribosomes is greater than that usually observed in the WT ribosome and that ASF is a functional attenuator for translocation that serves to maintain the reading frame.

摘要

23 S rRNA中的螺旋38(H38),即所谓的“ A位点指(ASF)”,位于核糖体50 S亚基的亚基间空间,并且与30 S亚基中的蛋白质S13一起形成桥B1a。已知在整个解码过程中,ASF直接与A位点tRNA相互作用。桥B1a会因30 S亚基相对于50 S亚基的棘轮状旋转而被破坏。这与延伸因子G(EF-G)催化的转位相关。为了进一步表征ASF的功能作用,构建了ASF缩短的大肠杆菌核糖体变体。携带这种ASF缩短核糖体的大肠杆菌菌株具有正常的生长速率,但+1移码活性增强。在有限的EF-G浓度下,ASF缩短的核糖体显示出正常的亚基缔合,但在聚(U)依赖性聚苯丙氨酸合成中比野生型(WT)核糖体具有更高的活性。相比之下,其他具有缩短的桥形成螺旋34和68的核糖体变体显示出比WT核糖体更弱的亚基缔合和更低效的翻译活性。因此,ASF缩短的核糖体的更高翻译活性是由桥B1a的破坏引起的,而不是由于亚基缔合减弱。单轮转位分析清楚地表明,ASF缩短的核糖体比WT核糖体具有更高的转位活性。这些观察结果表明,核糖体的内在转位活性大于通常在WT核糖体中观察到的活性,并且ASF是用于维持阅读框的转位功能衰减器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验