Gotte Giovanni, Donadelli Massimo, Laurents Douglas V, Vottariello Francesca, Morbio Manuela, Libonati Massimo
Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
Biochemistry. 2006 Sep 12;45(36):10795-806. doi: 10.1021/bi060933t.
Do the polarities of the N-terminus or the apolarity of the C-terminus of bovine RNase A influence the relative yields of its two 3D domain-swapped dimeric conformers, the N-dimer and C-dimer? We have addressed this question by substituting Ala-4 or Ala-5 with serine (A4S and A5S mutants) or Ser-123 with alanine (S123A mutant) through site-directed mutagenesis. Both the polarity of the N-terminus and the apolarity of the C-terminus of RNase A were, therefore, increased. CD spectra revealed no significant differences between the secondary structures of the mutants and native RNase A. According to thermal denaturation analyses, the A4S and A5S mutants are less stable, and the S123A mutant is more stable than wild type RNase A. By subjecting the mutants under mild or drastic denaturing conditions, side-by-side with native and recombinant RNase A, to a thermally induced oligomerization procedure, the following results were obtained. (i) The N-terminal mutants showed a higher propensity, with respect to the native protein, to form N-dimers under mild unfolding conditions. (ii) The C-terminal mutant showed a higher propensity to form the C-dimer under severely unfolding conditions. These results are discussed in light of the relative stabilities of the various RNase A species under different environmental conditions, and we conclude that the hydrophilic or hydrophobic character of the RNase N-terminus or C-terminus can be an important variable governing the oligomerization of RNase A and possibly other proteins through the 3D domain-swapping mechanism.
牛核糖核酸酶A(RNase A)的N端极性或C端非极性会影响其两种三维结构域交换二聚体构象(N-二聚体和C-二聚体)的相对产量吗?我们通过定点诱变将丙氨酸-4或丙氨酸-5替换为丝氨酸(A4S和A5S突变体),或将丝氨酸-123替换为丙氨酸(S123A突变体)来解决这个问题。因此,RNase A的N端极性和C端非极性都增加了。圆二色光谱(CD光谱)显示突变体和天然RNase A的二级结构之间没有显著差异。根据热变性分析,A4S和A5S突变体比野生型RNase A更不稳定,而S123A突变体更稳定。通过将突变体与天然和重组RNase A一起在温和或剧烈的变性条件下进行热诱导寡聚化过程,得到了以下结果。(i)在温和的变性条件下,相对于天然蛋白,N端突变体形成N-二聚体的倾向更高。(ii)在严重的变性条件下,C端突变体形成C-二聚体的倾向更高。根据不同环境条件下各种RNase A物种的相对稳定性对这些结果进行了讨论,我们得出结论,RNase A的N端或C端的亲水或疏水特性可能是通过三维结构域交换机制控制RNase A以及可能其他蛋白质寡聚化的一个重要变量。