Balashov Sergei P, Imasheva Eleonora S, Lanyi Janos K
Department of Physiology and Biophysics, University of California, D340 Medical Science I, Irvine, California 92697, USA.
Biochemistry. 2006 Sep 12;45(36):10998-1004. doi: 10.1021/bi061098i.
In xanthorhodopsin, a retinal protein-carotenoid complex of Salinibacter ruber, the carotenoid salinixanthin functions as a light-harvesting antenna in supplying additional excitation energy for retinal isomerization and proton transport. Another retinal protein, archaerhodopsin, has been shown to contain a carotenoid, bacterioruberin, but without an antenna function. We report here that the binding site confers a chiral geometry on salinixanthin in xanthorhodopsin and confirm that the same is true for bacterioruberin in archaerhodopsin. Cell membranes containing these rhodopsins exhibit CD spectra with sharp positive bands in the visible region where the carotenoids absorb, and in the case of xanthorhodopsin a negative band at 536 nm, as well as bands in the UV region. The carotenoid in ethanol has very weak optical activity in the visible region of the spectrum. Denaturation of the opsin upon deprotonation of the Schiff base at pH 12.5 eliminates the induced CD bands in both proteins. In one of these proteins, but not in the other, the carotenoid binding site depends entirely on the retinal. Hydrolysis of the retinal Schiff base of xanthorhodopsin with hydroxylamine eliminates the induced CD bands of salinixanthin. In contrast, hydrolysis of the Schiff base in archaerhodopsin does not abolish the CD bands of bacterioruberin. Thus, consistent with its antenna function, the carotenoid binding site interacts closely with the retinal only in xanthorhodopsin, and this interaction is the major source of the CD bands. In this protein, protonation of the counterion with a decrease in pH from 8 to 5 causes significant changes in the CD spectrum. The observed spectral features suggest that binding of salinixanthin in xanthorhodopsin involves the cyclohexenone ring of the carotenoid and its conformational heterogeneity is restricted.
在盐红菌的视黄醛蛋白 - 类胡萝卜素复合物——黄视紫红质中,类胡萝卜素盐红藻黄素作为光捕获天线,为视黄醛异构化和质子运输提供额外的激发能。另一种视黄醛蛋白古视紫红质已被证明含有类胡萝卜素细菌红素,但没有天线功能。我们在此报告,结合位点赋予黄视紫红质中盐红藻黄素手性几何结构,并证实古视紫红质中的细菌红素也是如此。含有这些视紫红质的细胞膜在类胡萝卜素吸收的可见光区域呈现出具有尖锐正峰的圆二色光谱,对于黄视紫红质而言,在536 nm处有一个负峰,以及在紫外区域的峰。乙醇中的类胡萝卜素在光谱的可见光区域具有非常弱的光学活性。在pH 12.5时席夫碱去质子化导致视蛋白变性,消除了两种蛋白质中的诱导圆二色带。在其中一种蛋白质中,但不是另一种,类胡萝卜素结合位点完全依赖于视黄醛。用羟胺水解黄视紫红质的视黄醛席夫碱消除了盐红藻黄素的诱导圆二色带。相比之下,水解古视紫红质中的席夫碱不会消除细菌红素的圆二色带。因此,与其天线功能一致,类胡萝卜素结合位点仅在黄视紫红质中与视黄醛紧密相互作用,这种相互作用是圆二色带的主要来源。在这种蛋白质中,随着pH从8降低到5反离子的质子化导致圆二色光谱发生显著变化。观察到的光谱特征表明,盐红藻黄素在黄视紫红质中的结合涉及类胡萝卜素的环己烯酮环,并且其构象异质性受到限制。