Ortinski Pavel I, Turner Jill R, Barberis Andrea, Motamedi Gholam, Yasuda Robert P, Wolfe Barry B, Kellar Kenneth J, Vicini Stefano
Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC 20007, USA.
J Neurosci. 2006 Sep 6;26(36):9323-31. doi: 10.1523/JNEUROSCI.2610-06.2006.
The loss of more than half the number of GABA(A) receptors yet lack of pronounced phenotype in mice lacking the gene for the GABA(A) alpha1 subunit is somewhat paradoxical. We explored the role of tonic GABA(A) receptor-mediated current as a target of compensatory regulation in the alpha1 knock-out (-/-) mice. A 62% increase of tonic current was observed in the cerebellar granule cells (CGCs) of alpha1-/- compared with wild-type (+/+) mice along with a 67% increase of baseline current variance. Examination of whole-cell currents evoked by low concentrations of GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol suggested no upregulation of alpha6 and delta subunit-containing GABA(A) receptors in the alpha1-/-, confirming previous biochemical studies. Single-channel current openings were on average 32% shorter in the alpha1-/- neurons. Single-channel conductance and frequency of opening were not different between genotypes. Tonic current induced by application of the GABA transporter GAT-1 blocker NO711 (1-[2([(diphenylmethylene)imino]oxy)ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride) was significantly larger in the alpha1-/-, suggesting an increase of ambient GABA concentration. Experiments done with a known concentration of extracellular GABA complemented by a series of biochemical experiments revealed a reduction of GAT activity in alpha1-/- without an identifiable reduction of GAT-1 or GAT-3 protein. We report increased tonic GABA(A) receptor-mediated current in the alpha1-/- CGCs as a novel compensatory mechanism. Our data establish a role for GABA transporters as regulators of neuronal excitability in this and relevant models and examine other tonic conductance-regulating mechanisms responsible for the adaptive response of the cerebellar network to a deletion of a major synaptic GABA(A) receptor subunit.
在缺乏GABA(A)α1亚基基因的小鼠中,GABA(A)受体数量减少超过一半,但却没有明显的表型,这多少有些自相矛盾。我们探究了强直性GABA(A)受体介导电流作为α1基因敲除(-/-)小鼠代偿性调节靶点的作用。与野生型(+/+)小鼠相比,在α1-/-小鼠的小脑颗粒细胞(CGCs)中观察到强直性电流增加了62%,同时基线电流方差增加了67%。低浓度GABA和4,5,6,7-四氢异恶唑并[5,4-c]吡啶-3-醇诱发的全细胞电流检测表明,α1-/-小鼠中含α6和δ亚基的GABA(A)受体没有上调,这证实了先前的生化研究。α1-/-神经元的单通道电流开放平均缩短了32%。不同基因型之间单通道电导和开放频率没有差异。应用GABA转运体GAT-1阻滞剂NO711(1-[2([(二苯基亚甲基)亚氨基]氧基)乙基]-1,2,5,6-四氢-3-吡啶羧酸盐酸盐)诱发的强直性电流在α1-/-小鼠中明显更大,这表明细胞外GABA浓度增加。用已知浓度的细胞外GABA进行的实验以及一系列生化实验表明,α1-/-小鼠中GAT活性降低,但GAT-1或GAT-3蛋白没有明显减少。我们报告了α1-/- CGCs中强直性GABA(A)受体介导电流增加是一种新的代偿机制。我们的数据确定了GABA转运体在该模型及相关模型中作为神经元兴奋性调节因子的作用,并研究了其他负责小脑网络对主要突触GABA(A)受体亚基缺失进行适应性反应的强直性电导调节机制。