Suppr超能文献

安山岩火山下方由减压驱动结晶作用导致的岩浆加热。

Magma heating by decompression-driven crystallization beneath andesite volcanoes.

作者信息

Blundy Jon, Cashman Kathy, Humphreys Madeleine

机构信息

Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, UK.

出版信息

Nature. 2006 Sep 7;443(7107):76-80. doi: 10.1038/nature05100.

Abstract

Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

摘要

爆发性火山喷发是由富含水的蒸汽从硅酸岩浆中逸出所驱动的。喷发动力学涉及蒸汽气泡的成核与生长以及结晶之间的复杂相互作用,在岩浆在火山下方上升时,会导致岩浆物理性质产生高度非线性变化。这使得爆发性火山活动难以建模,最终也难以预测。一个关键的未知因素是岩浆在通过火山下系统上升时的温度变化,因为它在途中会损失气体并结晶。对脱气但不结晶的岩浆进行的热力学建模表明,冷却和加热都是可能的。迄今为止,由于难以追踪地表以下数公里处移动岩浆的温度变化,所以无法评估这些可能性。在这里,我们扩展了近期关于被困在斜长石晶体中的玻璃质熔体包裹体的研究工作,以开发一种追踪两座活安山质火山下方岩浆中压力 - 温度 - 结晶度路径的方法。我们利用熔体包裹体中溶解的水来约束包裹体密封时水的压力,利用不相容微量元素浓度来计算相应的岩浆结晶度,并利用斜长石 - 熔体地热温度计来确定温度。这些数据与钛铁矿 - 磁铁矿地热温度计相结合,以表明上升岩浆的温度由于结晶潜热的释放而升高多达100摄氏度。这种加热可以解释安山质岩浆的几个常见结构特征,否则这些特征可能会被错误地归因于喷发前的岩浆混合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验