School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56126, Italy.
Nat Commun. 2016 Dec 12;7:13402. doi: 10.1038/ncomms13402.
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.
在通道模型中,岩浆上升的时间尺度通常被假定比玄武岩喷发的结晶和气体分离过程长得多。然而,现在人们认识到,玄武质岩浆可能上升得足够快,以至于不平衡过程在上升动力学中起着关键作用。结晶和分离过程的特征时间的量化对于我们理解这种不平衡和上升动力学是至关重要的。在这里,我们使用埃特纳火山 2001 年喷发的观测结果和一个岩浆上升模型来限制结晶和分离过程的时间尺度。我们的结果表明,斜长石在 1-2 小时内达到平衡,而上升时间<1 小时。利用对不平衡斜长石结晶的这些新限制,我们还再现了不同玄武质喷发的观测到的晶体丰度。岩浆上升速度与不平衡结晶和分离之间的强烈关系在控制玄武质火山喷发动力学中起着关键作用。