Suppr超能文献

细菌形状的选择价值。

The selective value of bacterial shape.

作者信息

Young Kevin D

机构信息

Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.

出版信息

Microbiol Mol Biol Rev. 2006 Sep;70(3):660-703. doi: 10.1128/MMBR.00001-06.

Abstract

Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.

摘要

细菌为什么会有特定形状?形态学是有价值的,还是仅仅是一个微不足道的次要特征?为什么细菌会呈现这种形状而非另一种?三个主要方面表明,细菌的形状并非偶然,而是具有生物学重要性:细胞在众多可能性中呈现出统一的形态,一些细胞会根据条件需求改变其形状,并且形态可以在进化谱系中追踪。所有这些都意味着形状是一种有助于生存的可选择特征。本综述的目的是阐明有利于不同细菌形态的物理、环境和生物力量,因此这些力量有助于自然选择。具体而言,细胞形状受八个一般因素驱动:营养获取、细胞分裂与分离、附着于表面、被动扩散、主动运动、极性分化、逃避捕食者的需求以及细胞分化的优势。细菌通过进行一种计算来应对这些力量,综合多种环境和行为因素,以产生适合其生存环境的大小和形状。就在我们开始回答细菌如何塑造其形状之时,扩大我们的努力以理解它们为何这样做似乎是合理且必要的。

相似文献

1
The selective value of bacterial shape.
Microbiol Mol Biol Rev. 2006 Sep;70(3):660-703. doi: 10.1128/MMBR.00001-06.
2
Bacterial morphology: why have different shapes?
Curr Opin Microbiol. 2007 Dec;10(6):596-600. doi: 10.1016/j.mib.2007.09.009. Epub 2007 Nov 5.
3
Bacterial shape: two-dimensional questions and possibilities.
Annu Rev Microbiol. 2010;64:223-40. doi: 10.1146/annurev.micro.112408.134102.
4
The Molecular Basis of Noncanonical Bacterial Morphology.
Trends Microbiol. 2018 Mar;26(3):191-208. doi: 10.1016/j.tim.2017.09.012. Epub 2017 Oct 19.
5
Thinking about bacterial populations as multicellular organisms.
Annu Rev Microbiol. 1998;52:81-104. doi: 10.1146/annurev.micro.52.1.81.
6
Motile curved bacteria are Pareto-optimal.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14440-14447. doi: 10.1073/pnas.1818997116. Epub 2019 Jul 2.
7
Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.
Bioessays. 2015 Apr;37(4):413-25. doi: 10.1002/bies.201400098. Epub 2015 Feb 9.
9
Adhesion and motility of gliding bacteria on substrata with different surface free energies.
Appl Environ Microbiol. 1990 Aug;56(8):2529-34. doi: 10.1128/aem.56.8.2529-2534.1990.
10
Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011902. doi: 10.1103/PhysRevE.77.011902. Epub 2008 Jan 7.

引用本文的文献

1
Form and function in biological filaments: a physicist's review.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
4
Dual-mode CRISPRa/i for genome-scale metabolic rewiring in Escherichia coli.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf818.
6
The DigH glycosyl hydrolase is conditionally required for daughter cell separation in .
J Bacteriol. 2025 Jul 24;207(7):e0006825. doi: 10.1128/jb.00068-25. Epub 2025 Jun 10.
7
Surface Rolling Active Magnetic Emulsions.
Adv Sci (Weinh). 2025 Aug;12(32):e01866. doi: 10.1002/advs.202501866. Epub 2025 Jun 10.
8
Wall teichoic acids regulate peptidoglycan synthesis by paving cell wall nanostructure.
bioRxiv. 2025 May 12:2024.09.02.610702. doi: 10.1101/2024.09.02.610702.
9
bifurcates into two sizes when it is cultured mixotrophically on soluble iron.
Front Microbiol. 2025 May 9;16:1455423. doi: 10.3389/fmicb.2025.1455423. eCollection 2025.

本文引用的文献

1
Grazing by protozoa as selection factor for activated sludge bacteria.
Microb Ecol. 1979 Sep;5(3):225-37. doi: 10.1007/BF02013529.
3
Bacterial adhesion: A physicochemical approach.
Microb Ecol. 1989 Jan;17(1):1-15. doi: 10.1007/BF02025589.
4
Changes of traits in a bacterial population associated with protozoal predation.
Microb Ecol. 1990 Dec;20(1):75-84. doi: 10.1007/BF02543868.
5
Bacterivory and herbivory: Key roles of phagotrophic protists in pelagic food webs.
Microb Ecol. 1994 Sep;28(2):223-35. doi: 10.1007/BF00166812.
6
Effect of bacterial cell shape on transport of bacteria in porous media.
Environ Sci Technol. 1995 Jul 1;29(7):1737-40. doi: 10.1021/es00007a007.
7
Bacterial tracking of motile algae.
FEMS Microbiol Ecol. 2003 May 1;44(1):79-87. doi: 10.1111/j.1574-6941.2003.tb01092.x.
8
The energetics and scaling of search strategies in bacteria.
Am Nat. 2002 Dec;160(6):727-40. doi: 10.1086/343874.
9
An experimental model of biofilm detachment in liquid fluidized bed biological reactors.
Biotechnol Bioeng. 1996 Sep 20;51(6):713-9. doi: 10.1002/(SICI)1097-0290(19960920)51:6<713::AID-BIT10>3.0.CO;2-E.
10
Removal rates of bacterial cells from glass surfaces by fluid shear.
Biotechnol Bioeng. 1982 Nov;24(11):2527-37. doi: 10.1002/bit.260241116.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验