Hein Peter, Rochais Francesca, Hoffmann Carsten, Dorsch Sandra, Nikolaev Viacheslav O, Engelhardt Stefan, Berlot Catherine H, Lohse Martin J, Bünemann Moritz
University Würzburg, Institute of Pharmacology and Toxicology, Versbacher Strasse 9, 97078 Würzburg, Germany.
J Biol Chem. 2006 Nov 3;281(44):33345-51. doi: 10.1074/jbc.M606713200. Epub 2006 Sep 8.
To analyze individual steps of G(S)-linked signaling in intact cells, we used fluorescence resonance energy transfer (FRET)-based assays for receptor-G protein interaction, G protein activation, and cAMP effector activation. To do so, we developed a FRET-based sensor to directly monitor G(S) activation in living cells. This was done by coexpressing a Galpha(s) mutant, in which a yellow fluorescent protein was inserted, together with cyan fluorescent protein-tagged Gbetagamma subunits and appropriate receptors in HEK293 cells. Together with assays for receptor activation and receptor-G protein interaction, it is possible to characterize large parts of the G(S) signaling cascade. When A(2A)-adenosine or beta(1)-adrenergic receptors are coexpressed with G(S) in HEK293T cells, the receptor-G(S) interaction was on the same time scale as A(2A) receptor activation with a time constant of <50 ms. G(S) activation was markedly slower and around 450 ms with similar kinetics following activation of A(2A)- or beta(1)-receptors. Taken together, our kinetic measurements demonstrate that the rate of G(S) activation limits initiation of G(S)-coupled receptor signaling.
为了分析完整细胞中G(S)偶联信号传导的各个步骤,我们使用了基于荧光共振能量转移(FRET)的检测方法来检测受体-G蛋白相互作用、G蛋白激活和cAMP效应器激活。为此,我们开发了一种基于FRET的传感器,以直接监测活细胞中的G(S)激活。这是通过在HEK293细胞中共表达插入了黄色荧光蛋白的Gα(s)突变体、青色荧光蛋白标记的Gβγ亚基和适当的受体来实现的。结合受体激活和受体-G蛋白相互作用的检测方法,可以对G(S)信号级联反应的大部分进行表征。当A(2A)-腺苷或β(1)-肾上腺素能受体在HEK293T细胞中与G(S)共表达时,受体-G(S)相互作用的时间尺度与A(2A)受体激活相同,时间常数<50毫秒。在A(2A)-或β(1)-受体激活后,G(S)激活明显较慢,时间约为450毫秒,动力学相似。综上所述,我们的动力学测量表明,G(S)激活速率限制了G(S)偶联受体信号传导的起始。