Suppr超能文献

弱应变DNA的扭转刚度。

Torsional rigidities of weakly strained DNAs.

作者信息

Fujimoto Bryant S, Brewood Gregory P, Schurr J Michael

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Biophys J. 2006 Dec 1;91(11):4166-79. doi: 10.1529/biophysj.106.087593. Epub 2006 Sep 8.

Abstract

Measurements on unstrained linear and weakly strained large (> or =340 bp) circular DNAs yield torsional rigidities in the range C = 170-230 fJ fm. However, larger values, in the range C = 270-420 fJ fm, are typically obtained from measurements on sufficiently small (< or =247 bp) circular DNAs, and values in the range C = 300-450 fJ fm are obtained from experiments on linear DNAs under tension. A new method is proposed to estimate torsional rigidities of weakly supercoiled circular DNAs. Monte Carlo simulations of the supercoiling free energies of solution DNAs, and also of the structures of surface-confined supercoiled plasmids, were performed using different trial values of C. The results are compared with experimental measurements of the twist energy parameter, E(T), that governs the supercoiling free energy, and also with atomic force microscopy images of surface-confined plasmids. The results clearly demonstrate that C-values in the range 170-230 fJ fm are compatible with experimental observations, whereas values in the range C > or = 269 fJ fm, are incompatible with those same measurements. These results strongly suggest that the secondary structure of DNA is altered by either sufficient coherent bending strain or sufficient tension so as to enhance its torsional rigidity.

摘要

对未受应变的线性和弱应变大(≥340 bp)环状DNA的测量得出扭转刚度在C = 170 - 230 fJ fm范围内。然而,通常从对足够小(≤247 bp)的环状DNA的测量中获得更大的值,即在C = 270 - 420 fJ fm范围内,并且从对处于张力下的线性DNA的实验中获得C = 300 - 450 fJ fm范围内的值。提出了一种新方法来估计弱超螺旋环状DNA的扭转刚度。使用不同的C试验值对溶液DNA的超螺旋自由能以及表面受限超螺旋质粒的结构进行了蒙特卡罗模拟。将结果与控制超螺旋自由能的扭转能量参数E(T)的实验测量值进行比较,并且还与表面受限质粒的原子力显微镜图像进行比较。结果清楚地表明,170 - 230 fJ fm范围内的C值与实验观察结果相符,而C≥269 fJ fm范围内的值与那些相同的测量结果不相符。这些结果强烈表明,DNA的二级结构会因足够的相干弯曲应变或足够的张力而改变,从而增强其扭转刚度。

相似文献

1
Torsional rigidities of weakly strained DNAs.
Biophys J. 2006 Dec 1;91(11):4166-79. doi: 10.1529/biophysj.106.087593. Epub 2006 Sep 8.
2
Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs.
Biophys J. 1995 Feb;68(2):619-33. doi: 10.1016/S0006-3495(95)80223-7.
3
Monte Carlo simulations of supercoiled DNAs confined to a plane.
Biophys J. 2002 Feb;82(2):944-62. doi: 10.1016/S0006-3495(02)75455-6.
4
On the origin of the temperature dependence of the supercoiling free energy.
Biophys J. 1997 Nov;73(5):2688-701. doi: 10.1016/S0006-3495(97)78297-3.
5
Monte Carlo simulations of locally melted supercoiled DNAs in 20 mM ionic strength.
Biophys J. 2004 May;86(5):3079-96. doi: 10.1016/s0006-3495(04)74357-x.
9
Effect of ethidium on the torsion constants of linear and supercoiled DNAs.
Biophys Chem. 1991 Dec;41(3):217-36. doi: 10.1016/0301-4622(91)85038-r.
10
Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation.
Biopolymers. 1996 Apr;38(4):493-503. doi: 10.1002/(SICI)1097-0282(199604)38:4%3C493::AID-BIP5%3E3.0.CO;2-O.

引用本文的文献

1
A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results.
Front Mol Biosci. 2021 Jun 17;8:693710. doi: 10.3389/fmolb.2021.693710. eCollection 2021.
2
Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
Nucleic Acids Res. 2015 Dec 2;43(21):10143-56. doi: 10.1093/nar/gkv1028. Epub 2015 Oct 12.
3
DNA supercoiling: a regulatory signal for the λ repressor.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15402-7. doi: 10.1073/pnas.1320644111. Epub 2014 Oct 15.
4
Efficient deformation algorithm for plasmid DNA simulations.
BMC Bioinformatics. 2014 Sep 15;15(1):301. doi: 10.1186/1471-2105-15-301.
5
Blind predictions of DNA and RNA tweezers experiments with force and torque.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003756. doi: 10.1371/journal.pcbi.1003756. eCollection 2014 Aug.
6
Structural ensemble and microscopic elasticity of freely diffusing DNA by direct measurement of fluctuations.
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1444-51. doi: 10.1073/pnas.1218830110. Epub 2013 Apr 1.
7
DNA on a tube: electrostatic contribution to stiffness.
J Phys Chem B. 2008 Dec 18;112(50):16163-9. doi: 10.1021/jp806260h.
8
A structural transition in duplex DNA induced by ethylene glycol.
J Phys Chem B. 2008 Oct 23;112(42):13367-80. doi: 10.1021/jp802139a. Epub 2008 Sep 30.

本文引用的文献

3
Monte Carlo simulations of locally melted supercoiled DNAs in 20 mM ionic strength.
Biophys J. 2004 May;86(5):3079-96. doi: 10.1016/s0006-3495(04)74357-x.
5
Structural transitions and elasticity from torque measurements on DNA.
Nature. 2003 Jul 17;424(6946):338-41. doi: 10.1038/nature01810.
6
High-throughput approach for detection of DNA bending and flexibility based on cyclization.
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3161-6. doi: 10.1073/pnas.0530189100. Epub 2003 Mar 10.
7
Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization.
Biophys J. 2003 Jan;84(1):136-53. doi: 10.1016/S0006-3495(03)74838-3.
8
Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.
Biophys J. 2002 Dec;83(6):3446-59. doi: 10.1016/S0006-3495(02)75344-7.
9
Contribution of the intrinsic curvature to measured DNA persistence length.
J Mol Biol. 2002 Mar 22;317(2):205-13. doi: 10.1006/jmbi.2001.5366.
10
Comment on "Elasticity model of a supercoiled DNA molecule".
Phys Rev Lett. 2002 Feb 25;88(8):089801. doi: 10.1103/PhysRevLett.88.089801. Epub 2002 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验