Liebl Korbinian, Drsata Tomas, Lankas Filip, Lipfert Jan, Zacharias Martin
Physik-Department T38, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany.
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 166 10 Prague, Czech Republic Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Prague, Albertov 6, 128 43 Prague, Czech Republic.
Nucleic Acids Res. 2015 Dec 2;43(21):10143-56. doi: 10.1093/nar/gkv1028. Epub 2015 Oct 12.
Double stranded helical DNA and RNA are flexible molecules that can undergo global conformational fluctuations. Their bending, twisting and stretching deformabilities are of similar magnitude. However, recent single-molecule experiments revealed a striking qualitative difference indicating an opposite sign for the twist-stretch couplings of dsDNA and dsRNA [Lipfert et al. 2014. Proc. Natl. Acad. Sci. U.S.A. 111, 15408] that is not explained by existing models. Employing unconstrained Molecular Dynamics (MD) simulations we are able to reproduce the qualitatively different twist-stretch coupling for dsDNA and dsRNA in semi-quantitative agreement with experiment. Similar results are also found in simulations that include an external torque to induce over- or unwinding of DNA and RNA. Detailed analysis of the helical deformations coupled to twist indicate that the interplay of helical rise, base pair inclination and displacement from the helix axis upon twist changes are responsible for the different twist-stretch correlations. Overwinding of RNA results in more compact conformations with a narrower major groove and consequently reduced helical extension. Overwinding of DNA decreases the size of the minor groove and the resulting positive base pair inclination leads to a slender and more extended helical structure.
双链螺旋DNA和RNA是柔性分子,能够发生整体构象波动。它们的弯曲、扭转和拉伸变形能力大小相似。然而,最近的单分子实验揭示了一个显著的定性差异,表明双链DNA和双链RNA的扭转-拉伸耦合具有相反的符号[利普费特等人,2014年。美国国家科学院院刊111, 15408],现有模型无法解释这一现象。通过无约束分子动力学(MD)模拟,我们能够半定量地重现双链DNA和双链RNA在扭转-拉伸耦合上的定性差异,与实验结果相符。在包含外部扭矩以诱导DNA和RNA过度缠绕或解旋的模拟中也发现了类似结果。对与扭转相关的螺旋变形进行详细分析表明,螺旋上升、碱基对倾斜以及扭转变化时偏离螺旋轴的位移之间的相互作用,是造成不同扭转-拉伸相关性的原因。RNA过度缠绕会导致构象更紧凑,大沟变窄,从而使螺旋延伸减小。DNA过度缠绕会减小小沟的尺寸,由此产生的正碱基对倾斜会导致螺旋结构更细长且延伸。