Suppr超能文献

用活的乳酸奈瑟菌免疫可保护小鼠免受脑膜炎球菌攻击,并能引发血清杀菌抗体。

Immunization with live Neisseria lactamica protects mice against meningococcal challenge and can elicit serum bactericidal antibodies.

作者信息

Li Yanwen, Zhang Qian, Winterbotham Megan, Mowe Eva, Gorringe Andrew, Tang Christoph M

机构信息

Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

Infect Immun. 2006 Nov;74(11):6348-55. doi: 10.1128/IAI.01062-06. Epub 2006 Sep 11.

Abstract

Natural immunity against Neisseria meningitidis is thought to develop following nasopharyngeal colonization with this bacterium or other microbes expressing cross-reactive antigens. Neisseria lactamica is a commensal of the upper respiratory tract which is often carried by infants and young children; epidemiological evidence indicates that colonization with this bacterium can elicit serum bactericidal activity (SBA) against Neisseria meningitidis, the most validated correlate of protective immunity. Here we demonstrate experimentally that immunization of mice with live N. lactamica protects animals against lethal meningococcal challenge and that some, but not all, strains of N. lactamica elicit detectable SBA in immunized animals regardless of the serogroup of N. meningitidis. While it is unlikely that immunization with live N. lactamica will be implemented as a vaccine against meningococcal disease, understanding the basis for the induction of cross-protective immunity and SBA should be valuable in the design of subunit vaccines for the prevention of this important human infection.

摘要

人们认为,在鼻咽部被这种细菌或表达交叉反应抗原的其他微生物定植后,会产生针对脑膜炎奈瑟菌的天然免疫力。乳酸奈瑟菌是上呼吸道的一种共生菌,常存在于婴幼儿体内;流行病学证据表明,被这种细菌定植可引发针对脑膜炎奈瑟菌的血清杀菌活性(SBA),这是保护性免疫最有效的相关指标。在此,我们通过实验证明,用活的乳酸奈瑟菌免疫小鼠可保护动物免受致死性脑膜炎球菌攻击,并且一些(但不是全部)乳酸奈瑟菌菌株能在免疫动物中引发可检测到的SBA,而与脑膜炎奈瑟菌的血清群无关。虽然用活的乳酸奈瑟菌进行免疫不太可能作为预防脑膜炎球菌病的疫苗来实施,但了解诱导交叉保护性免疫和SBA的基础对于设计预防这种重要人类感染的亚单位疫苗应该是有价值的。

相似文献

3
Can Neisseria lactamica antigens provide an effective vaccine to prevent meningococcal disease?
Expert Rev Vaccines. 2005 Jun;4(3):373-9. doi: 10.1586/14760584.4.3.373.
4
The development of a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles.
Vaccine. 2005 Mar 18;23(17-18):2210-3. doi: 10.1016/j.vaccine.2005.01.055.
6
8
9
Neisseria lactamica protects against experimental meningococcal infection.
Infect Immun. 2002 Jul;70(7):3621-6. doi: 10.1128/IAI.70.7.3621-3626.2002.

引用本文的文献

1
Exploiting haem-iron dependence of nontypeable : an avenue for future therapeutic development.
Front Cell Infect Microbiol. 2025 May 15;15:1548048. doi: 10.3389/fcimb.2025.1548048. eCollection 2025.
4
Panel 4: Recent advances in understanding the natural history of the otitis media microbiome and its response to environmental pressures.
Int J Pediatr Otorhinolaryngol. 2020 Mar;130 Suppl 1(Suppl 1):109836. doi: 10.1016/j.ijporl.2019.109836. Epub 2019 Dec 18.
5
Structural and Immunological Characterization of Novel Recombinant MOMP-Based Chlamydial Antigens.
Vaccines (Basel). 2017 Dec 25;6(1):2. doi: 10.3390/vaccines6010002.
6
Comparative Proteomics Analysis of Two Strains of Neisseria meningitidis Serogroup B and Neisseria lactamica.
Jundishapur J Microbiol. 2015 Nov 14;8(11):e25228. doi: 10.5812/jjm.25228. eCollection 2015 Nov.
8
Invasive potential of nonencapsulated disease isolates of Neisseria meningitidis.
Infect Immun. 2012 Jul;80(7):2346-53. doi: 10.1128/IAI.00293-12. Epub 2012 Apr 16.
9
Evidence of a functional B-cell immunodeficiency in adults who experience serogroup C meningococcal disease.
Clin Vaccine Immunol. 2009 May;16(5):692-8. doi: 10.1128/CVI.00485-08. Epub 2009 Mar 11.
10
Variation in the Neisseria lactamica porin, and its relationship to meningococcal PorB.
Microbiology (Reading). 2008 May;154(Pt 5):1525-1534. doi: 10.1099/mic.0.2007/015479-0.

本文引用的文献

1
A universal vaccine for serogroup B meningococcus.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10834-9. doi: 10.1073/pnas.0603940103. Epub 2006 Jul 6.
3
Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species.
Microbiology (Reading). 2005 Sep;151(Pt 9):2907-2922. doi: 10.1099/mic.0.28099-0.
4
Can Neisseria lactamica antigens provide an effective vaccine to prevent meningococcal disease?
Expert Rev Vaccines. 2005 Jun;4(3):373-9. doi: 10.1586/14760584.4.3.373.
5
Available carbon source influences the resistance of Neisseria meningitidis against complement.
J Exp Med. 2005 May 16;201(10):1637-45. doi: 10.1084/jem.20041548.
6
Genetic diversity and carriage dynamics of Neisseria lactamica in infants.
Infect Immun. 2005 Apr;73(4):2424-32. doi: 10.1128/IAI.73.4.2424-2432.2005.
7
Meningococcal surrogates of protection--serum bactericidal antibody activity.
Vaccine. 2005 Mar 18;23(17-18):2222-7. doi: 10.1016/j.vaccine.2005.01.051.
8
The development of a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles.
Vaccine. 2005 Mar 18;23(17-18):2210-3. doi: 10.1016/j.vaccine.2005.01.055.
9
The concept of "tailor-made", protein-based, outer membrane vesicle vaccines against meningococcal disease.
Vaccine. 2005 Mar 18;23(17-18):2202-5. doi: 10.1016/j.vaccine.2005.01.058.
10
Neisseria meningitidis: an overview of the carriage state.
J Med Microbiol. 2004 Sep;53(Pt 9):821-832. doi: 10.1099/jmm.0.45529-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验