Schwender Jörg, Shachar-Hill Yair, Ohlrogge John B
Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
J Biol Chem. 2006 Nov 10;281(45):34040-7. doi: 10.1074/jbc.M606266200. Epub 2006 Sep 12.
The metabolism of developing plant seeds is directed toward transforming primary assimilatory products (sugars and amino acids) into seed storage compounds. To understand the role of mitochondria in this metabolism, metabolic fluxes were determined in developing embryos of Brassica napus. After labeling with [1,2-(13)C2]glucose + [U-(13)C6]glucose, [U-(13)C3]alanine, [U-(13)C5]glutamine, [(15)N]alanine, (amino)-[(15)N]glutamine, or (amide)-[(15)N]glutamine, the resulting labeling patterns in protein amino acids and in fatty acids were analyzed by gas chromatography-mass spectrometry. Fluxes through mitochondrial metabolism were quantified using a steady state flux model. Labeling information from experiments using different labeled substrates was essential for model validation and reliable flux estimation. The resulting flux map shows that mitochondrial metabolism in these developing seeds is very different from that in either heterotrophic or autotrophic plant tissues or in most other organisms: (i) flux around the tricarboxylic acid cycle is absent and the small fluxes through oxidative reactions in the mitochondrion can generate (via oxidative phosphorylation) at most 22% of the ATP needed for biosynthesis; (ii) isocitrate dehydrogenase is reversible in vivo; (iii) about 40% of mitochondrial pyruvate is produced by malic enzyme rather than being imported from the cytosol; (iv) mitochondrial flux is largely devoted to providing precursors for cytosolic fatty acid elongation; and (v) the uptake of amino acids rather than anaplerosis via PEP carboxylase determines carbon flow into storage proteins.
发育中的植物种子的新陈代谢旨在将初级同化产物(糖类和氨基酸)转化为种子储存化合物。为了了解线粒体在这种新陈代谢中的作用,我们测定了甘蓝型油菜发育胚中的代谢通量。在用[1,2-(13)C2]葡萄糖 + [U-(13)C6]葡萄糖、[U-(13)C3]丙氨酸、[U-(13)C5]谷氨酰胺、[(15)N]丙氨酸、(氨基)-[(15)N]谷氨酰胺或(酰胺)-[(15)N]谷氨酰胺进行标记后,通过气相色谱 - 质谱法分析了蛋白质氨基酸和脂肪酸中产生的标记模式。使用稳态通量模型对线粒体代谢通量进行了量化。来自使用不同标记底物的实验的标记信息对于模型验证和可靠的通量估计至关重要。所得的通量图表明,这些发育种子中的线粒体代谢与异养或自养植物组织或大多数其他生物体中的线粒体代谢非常不同:(i) 三羧酸循环周围的通量不存在,线粒体中通过氧化反应的小通量最多只能通过氧化磷酸化产生生物合成所需ATP的22%;(ii) 异柠檬酸脱氢酶在体内是可逆的;(iii) 线粒体丙酮酸约40%由苹果酸酶产生,而不是从细胞质中导入;(iv) 线粒体通量主要用于为细胞质脂肪酸延长提供前体;(v) 氨基酸的摄取而不是通过磷酸烯醇式丙酮酸羧化酶的回补反应决定了碳流入储存蛋白的流量。