Suppr超能文献

碳氮供应改变了发育中的大豆胚的代谢通量。

Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos.

机构信息

United States Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, St. Louis, MO 63132, USA.

出版信息

Plant Physiol. 2013 Mar;161(3):1458-75. doi: 10.1104/pp.112.203299. Epub 2013 Jan 11.

Abstract

Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-(13)C5]glutamine, [U-(13)C4]asparagine, and [1,2-(13)C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-(14)C12]sucrose, [U-(14)C6]glucose, [U-(14)C5]glutamine, and [U-(14)C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism.

摘要

大豆(Glycine max)种子将大量的生物质以蛋白质的形式储存,其含量反映了发育中的胚胎所接收的碳和氮。通过一系列胚胎培养实验研究了填充过程中碳氮供应与种子成分之间的关系。通过代谢通量分析进一步探讨了三种不同的碳氮供应比例。利用[U-(13)C5]谷氨酰胺、[U-(13)C4]天冬酰胺和[1,2-(13)C2]葡萄糖进行的标记实验,评估了改变供食条件下胚胎的代谢情况,并创建了相应的通量图。此外,还使用[U-(14)C12]蔗糖、[U-(14)C6]葡萄糖、[U-(14)C5]谷氨酰胺和[U-(14)C4]天冬酰胺来监测碳分配的差异。分析表明:(1) 蛋白质浓度占大豆胚胎生物量的百分比与碳氮比相符;(2) 改变氮供应不会显著影响相对氨基酸或贮藏蛋白亚基谱;(3) 谷氨酰胺供应为生物量生产贡献了 10%至 23%的碳,包括 9%至 19%的碳用于脂肪酸生物合成和 32%至 46%的碳用于氨基酸。种子代谢适应不同水平的蛋白质生物合成,同时保持干重积累的恒定速率。通过三羧酸循环中的柠檬酸裂解酶和苹果酸酶活性产生的通量,对乙酰辅酶 A 的产生有重要贡献。这些通量随着质体丙酮酸激酶的变化而变化,以维持用于氨基酸和脂肪酸的丙酮酸供应。通量图通过氮平衡独立验证,并突出了初级代谢的稳健性。

相似文献

2
The role of light in soybean seed filling metabolism.光在大豆种子灌浆代谢中的作用。
Plant J. 2009 Apr;58(2):220-34. doi: 10.1111/j.1365-313X.2008.03771.x. Epub 2008 Dec 10.
6
Mitochondrial metabolism in developing embryos of Brassica napus.甘蓝型油菜发育胚胎中的线粒体代谢
J Biol Chem. 2006 Nov 10;281(45):34040-7. doi: 10.1074/jbc.M606266200. Epub 2006 Sep 12.

引用本文的文献

9
Genetic mapping and functional genomics of soybean seed protein.大豆种子蛋白的遗传图谱构建与功能基因组学研究
Mol Breed. 2023 Apr 12;43(4):29. doi: 10.1007/s11032-023-01373-5. eCollection 2023 Apr.

本文引用的文献

1
In and out of the plant storage vacuole.在植物液泡内外。
Plant Sci. 2012 Jul;190:52-61. doi: 10.1016/j.plantsci.2012.03.010. Epub 2012 Apr 7.
3
Eukaryotic metabolism: measuring compartment fluxes.真核生物代谢:测量隔室通量。
Biotechnol J. 2011 Sep;6(9):1071-85. doi: 10.1002/biot.201100032. Epub 2011 Aug 29.
6
13C metabolic flux analysis in complex systems.复杂体系的 13C 代谢通量分析。
Curr Opin Biotechnol. 2011 Feb;22(1):103-8. doi: 10.1016/j.copbio.2010.08.009. Epub 2010 Sep 15.
8
Not just a circle: flux modes in the plant TCA cycle.不只是一个圆圈:植物 TCA 循环中的通量模式。
Trends Plant Sci. 2010 Aug;15(8):462-70. doi: 10.1016/j.tplants.2010.05.006. Epub 2010 Jun 16.
10
Intracellular metabolite transporters in plants.植物细胞内代谢物转运蛋白。
Mol Plant. 2010 Jan;3(1):21-53. doi: 10.1093/mp/ssp108. Epub 2009 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验