Casellas J, Tarrés J, Piedrafita J, Varona L
Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
J Anim Sci. 2006 Oct;84(10):2609-16. doi: 10.2527/jas.2005-729.
Given that correct assumptions on the baseline survival function are determinant for the validity of further inferences, specific tools to test the fit of a model to real data become essential in proportional hazards models. In this sense, we have proposed a parametric bootstrap to test the fit of survival models. Monte Carlo simulations are used to generate new data sets from the estimates obtained through the assumed models, and then bootstrap intervals can be established for the survival function along the time space studied. Significant fitting deficiencies are revealed when the real survival function is not included within the bootstrap interval. We tested this procedure in a survival data set of Bruna dels Pirineus beef calves, assuming 4 parametric models (exponential, Weibull, exponential time-dependent, Weibull time-dependent) and the Cox's semiparametric model. Fitting deficiencies were not observed for the Cox's model and the exponential time-dependent model, whereas the Weibull time-dependent model suffered from moderate overestimation at different ages. Thus, the exponential time-dependent model appears to be preferable because of its correct fit for survival data of beef calves and its smaller computational and time requirements. Exponential and Weibull models were completely rejected due to the continuous over- and underestimation of the survival probability reported. Results here highlighted the flexibility of parametric models with time-dependent effects, achieving a fit comparable to nonparametric models.
鉴于对基线生存函数的正确假设是进一步推断有效性的决定因素,在比例风险模型中,用于检验模型与实际数据拟合度的特定工具变得至关重要。从这个意义上说,我们提出了一种参数自助法来检验生存模型的拟合度。蒙特卡罗模拟用于根据通过假定模型获得的估计值生成新的数据集,然后可以在所研究的时间空间内为生存函数建立自助区间。当实际生存函数不包含在自助区间内时,就会揭示出显著的拟合缺陷。我们在布吕纳-德尔斯-皮雷内斯肉牛犊的生存数据集上测试了这个程序,假定了4种参数模型(指数模型、威布尔模型、指数时间相依模型、威布尔时间相依模型)以及考克斯半参数模型。考克斯模型和指数时间相依模型未观察到拟合缺陷,而威布尔时间相依模型在不同年龄存在中度高估。因此,指数时间相依模型似乎更可取,因为它对肉牛犊的生存数据拟合正确,且计算和时间要求较低。指数模型和威布尔模型由于持续高估和低估报告的生存概率而被完全拒绝。这里的结果突出了具有时间相依效应的参数模型的灵活性,其拟合度可与非参数模型相媲美。