Grup de Recerca en Remugants, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
J Anim Breed Genet. 2011 Apr;128(2):100-4. doi: 10.1111/j.1439-0388.2010.00892.x. Epub 2011 Jan 27.
This manuscript focuses on the development of a bootstrap test for validating the proportional hazard (PH) assumption in longevity data, avoiding parametric assumptions on baseline survival and hazard patterns, and subjective interpretations of previously developed graphical tests. Monte Carlo simulations are used to generate new data sets from the estimated Kaplan-Meier survival function, and inferences are then made on the coefficient of variation (CV) of the estimated hazard over time. One-tailed bootstrap intervals can be established, given that the CV could theoretically range between 0 (perfect PH) and +∞ (absolute loss of proportionality between hazard functions). This procedure was tested by simulation, and the obtained results suggested it as a useful statistical tool when Kaplan-Meier assumptions are satisfied. If not, this bootstrap test was robust for medium to large data sets, whereas it could suffer from statistical biases when testing small populations.
本文稿重点介绍了一种自举检验方法,用于验证长寿数据中比例风险(PH)假设,该方法避免了对基线生存和风险模式的参数假设,以及对先前开发的图形检验的主观解释。通过从估计的 Kaplan-Meier 生存函数中生成新的数据集,然后对随时间变化的估计风险的变异系数(CV)进行推断。可以建立单侧自举区间,因为 CV 理论上可以在 0(PH 完全成立)和+∞(风险函数之间的比例关系完全丧失)之间变化。通过模拟对该程序进行了测试,所得结果表明,在满足 Kaplan-Meier 假设的情况下,该自举检验是一种有用的统计工具。如果不满足,则该自举检验对中等至大型数据集具有稳健性,而在测试小群体时,它可能会受到统计偏差的影响。