Kamata Keigo, Kotani Miyuki, Yamaguchi Kazuya, Hikichi Shiro, Mizuno Noritaka
Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
Chemistry. 2007;13(2):639-48. doi: 10.1002/chem.200600384.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate TBA[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, TBA[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.
缺位的Keggin型多金属氧酸盐TBA[γ-SiW(10)O(34)(H(2)O)(2)] (I)的四正丁基铵(TBA)盐催化烯烃、烯丙醇和硫化物与30%的过氧化氢水溶液的氧转移反应。对p-取代苯乙烯的竞争氧化反应,其负的哈米特ρ(+)值(-0.99)以及I催化氧化噻蒽5-氧化物(SSO)时较低的(亲核氧化)/(总氧化)值X(SO)=0.04表明,I上形成了强亲电氧化物种。3-甲基-1-环己烯环氧化过程中反式环氧化物的优先形成证明了I活性位点的空间限制。I催化的环氧化反应有一个诱导期,用过氧化氢处理I后该诱导期消失。(29)Si和(183)W核磁共振光谱以及CSI质谱表明,I与过量过氧化氢反应会快速形成一种双过氧物种TBA[γ-SiW(10)O(32)(O(2))(2)] (II),并保留γ-Keggin型结构。虽然分离出的化合物II对环辛烯的化学计量环氧化反应无活性,但在过氧化氢存在下II确实能进行环氧化反应。II与过氧化氢反应会形成一种活性物种(III),这一步对应于催化环氧化反应中观察到的诱导期。III的空间和电子特性与I催化环氧化反应的相同。动力学、光谱学和机理研究表明,目前的环氧化反应通过III进行。