Suppr超能文献

氯离子分泌性气道上皮细胞中离子转运调节模型。电学、化学和荧光测量的综合描述。

Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements.

作者信息

Hartmann T, Verkman A S

机构信息

Department of Medicine, University of California, San Francisco 94143.

出版信息

Biophys J. 1990 Aug;58(2):391-401. doi: 10.1016/S0006-3495(90)82385-7.

Abstract

An electrokinetic model was developed to calculate the time course of electrical parameters, ion fluxes, and intracellular ion activities for experiments performed in airway epithelial cells. Model variables included cell [Na], [K], [Cl], volume, and membrane potentials. The model contained apical membrane Cl, Na, and K conductances, basolateral membrane K conductance, Na/K/2 Cl and Na/Cl symport, and 3 Na/2 K ATPase, and a paracellular conductance. Transporter permeabilities and ion saturabilities were determined from reported ion flux data and membrane potentials in intact canine trachea. Without additional assumptions, the model predicted accurately the measured short-circuit current (Isc), cellular conductances, voltage-divider ratios, open-circuit potentials, and the time course of cell ion composition in ion substitution experiments. The model was used to examine quantitatively: (a) the effect of transport inhibitors on Isc and membrane potentials, (b) the dual role of apical Cl and basolateral K conductance in cell secretion, (c) whether the basolateral symporter requires K, and (d) the regulation of apical Cl conductance by cAMP and Ca-dependent signaling pathways. Model predictions gave improved understanding of the interrelations among transporting systems and in many cases gave surprising predictions that were not obvious without a detailed model. The model developed here has direct application to secretory or absorptive epithelial cells in the kidney thick ascending limb, cornea, sweat duct, and intestine in normal and pathophysiological states such as cystic fibrosis and cholera.

摘要

开发了一种电动模型,用于计算在气道上皮细胞中进行的实验的电参数、离子通量和细胞内离子活性的时间进程。模型变量包括细胞内的[Na]、[K]、[Cl]、体积和膜电位。该模型包含顶端膜Cl、Na和K电导、基底外侧膜K电导、Na/K/2Cl和Na/Cl同向转运体、3Na/2KATP酶以及细胞旁电导。转运体通透性和离子饱和度根据已报道的完整犬气管中的离子通量数据和膜电位确定。在没有额外假设的情况下,该模型准确预测了离子替代实验中测得的短路电流(Isc)、细胞电导、分压器比率、开路电位以及细胞离子组成的时间进程。该模型用于定量研究:(a)转运抑制剂对Isc和膜电位的影响;(b)顶端Cl和基底外侧K电导在细胞分泌中的双重作用;(c)基底外侧同向转运体是否需要K;(d)cAMP和Ca依赖信号通路对顶端Cl电导的调节。模型预测有助于更好地理解转运系统之间的相互关系,并且在许多情况下给出了令人惊讶的预测,这些预测在没有详细模型的情况下并不明显。这里开发的模型可直接应用于正常和病理生理状态(如囊性纤维化和霍乱)下肾脏髓袢升支粗段、角膜、汗腺管和肠道中的分泌性或吸收性上皮细胞。

相似文献

2
Regulation of apical and basolateral K+ conductances in rat colon.
Br J Pharmacol. 1997 Sep;122(1):87-94. doi: 10.1038/sj.bjp.0701353.
3
Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia.
Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003-7. doi: 10.1073/pnas.88.14.6003.
5
The molecular basis of chloride transport in shark rectal gland.
J Exp Biol. 1994 Nov;196:405-18. doi: 10.1242/jeb.196.1.405.
6
[Physiology of the tracheal epithelium].
Arch Int Physiol Biochim. 1988 Sep;96(4):A347-62.
7
An analytical model of ionic movements in airway epithelial cells.
J Theor Biol. 1991 Jul 21;151(2):231-47. doi: 10.1016/s0022-5193(05)80362-5.
8
Characteristics of ionic transport processes in fish intestinal epithelial cells.
Biosystems. 1998 Feb;45(2):123-40. doi: 10.1016/s0303-2647(97)00071-3.
9
ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
Pflugers Arch. 2003 Jan;445(4):522-8. doi: 10.1007/s00424-002-0956-0. Epub 2002 Dec 4.

引用本文的文献

2
Mathematical models of cystic fibrosis as a systemic disease.
WIREs Mech Dis. 2023 Nov-Dec;15(6):e1625. doi: 10.1002/wsbm.1625. Epub 2023 Aug 6.
3
Physiology and pathophysiology of human airway mucus.
Physiol Rev. 2022 Oct 1;102(4):1757-1836. doi: 10.1152/physrev.00004.2021. Epub 2022 Jan 10.
4
Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7272-E7281. doi: 10.1073/pnas.1617383114. Epub 2017 Aug 14.
5
Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium.
J Physiol. 2017 Mar 15;595(6):1947-1972. doi: 10.1113/JP273306. Epub 2017 Feb 8.
7
A spatial model of fluid recycling in the airways of the lung.
J Theor Biol. 2015 Oct 7;382:198-215. doi: 10.1016/j.jtbi.2015.06.050. Epub 2015 Jul 10.
8
Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model.
Am J Physiol Cell Physiol. 2014 Aug 15;307(4):C320-37. doi: 10.1152/ajpcell.00068.2013. Epub 2014 Jun 4.
9
Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport.
J Physiol. 2013 Aug 1;591(15):3681-92. doi: 10.1113/jphysiol.2013.253955. Epub 2013 Jun 3.
10
A model of lysosomal pH regulation.
J Gen Physiol. 2013 Jun;141(6):705-20. doi: 10.1085/jgp.201210930.

本文引用的文献

1
Regional differences in bioelectric properties and ion flow in excised canine airways.
J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):706-14. doi: 10.1152/jappl.1981.51.3.706.
3
Evidence for basolateral membrane potassium conductance in canine tracheal epithelium.
Am J Physiol. 1983 May;244(5):C377-84. doi: 10.1152/ajpcell.1983.244.5.C377.
4
Inhibition of chloride secretion by furosemide in canine tracheal epithelium.
J Membr Biol. 1983;71(3):219-26. doi: 10.1007/BF01875463.
8
Effects of "loop" diuretics on ion transport by dog tracheal epithelium.
Am J Physiol. 1983 Nov;245(5 Pt 1):C388-96. doi: 10.1152/ajpcell.1983.245.5.C388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验