Suppr超能文献

遗传基因组学研究的微阵列实验设计策略综述。

Review of microarray experimental design strategies for genetical genomics studies.

作者信息

Rosa Guilherme J M, de Leon Natalia, Rosa Artur J M

机构信息

Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Physiol Genomics. 2006 Dec 13;28(1):15-23. doi: 10.1152/physiolgenomics.00106.2006. Epub 2006 Sep 19.

Abstract

Genetical genomics approaches provide a powerful tool for studying the genetic mechanisms governing variation in complex traits. By combining information on phenotypic traits, pedigree structure, molecular markers, and gene expression, such studies can be used for estimating heritability of mRNA transcript abundances, for mapping expression quantitative trait loci (eQTL), and for inferring regulatory gene networks. Microarray experiments, however, can be extremely costly and time consuming, which may limit sample sizes and statistical power. Thus it is crucial to optimize experimental designs by carefully choosing the subjects to be assayed, within a selective profiling approach, and by cautiously controlling systematic factors affecting the system. Also, a rigorous strategy should be used for allocating mRNA samples across assay batches, slides, and dye labeling, so that effects of interest are not confounded with nuisance factors. In this presentation, we review some selective profiling strategies for genetical genomics studies, including the selection of individuals for increased genetic dissimilarity and for a higher number of recombination events. Efficient designs for studying epistasis are also discussed, as well as experiments for inferring heritability of transcriptional levels. It is shown that solving an optimal design problem generally requires a numerical implementation and that the optimality criteria should be intimately related to the goals of the experiment, such as the estimation of additive, dominance, and interacting effects, localizing putative eQTL, or inferring genetic and environmental variance components associated with transcriptional abundances.

摘要

遗传基因组学方法为研究控制复杂性状变异的遗传机制提供了强大工具。通过整合表型性状、谱系结构、分子标记和基因表达等信息,此类研究可用于估计mRNA转录本丰度的遗传力、定位表达数量性状基因座(eQTL)以及推断调控基因网络。然而,微阵列实验可能极其昂贵且耗时,这可能会限制样本量和统计效力。因此,在选择性分析方法中,通过仔细选择待检测的对象,并谨慎控制影响系统的系统因素来优化实验设计至关重要。此外,应采用严格的策略在分析批次、玻片和染料标记之间分配mRNA样本,以使感兴趣的效应不与干扰因素混淆。在本报告中,我们回顾了一些遗传基因组学研究的选择性分析策略,包括选择遗传差异更大和重组事件更多的个体。还讨论了用于研究上位性的高效设计,以及推断转录水平遗传力的实验。结果表明,解决最优设计问题通常需要数值实现,并且最优性标准应与实验目标密切相关,如估计加性、显性和互作效应、定位假定的eQTL或推断与转录丰度相关的遗传和环境方差成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验